Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial

Despite evidence that airborne transmission contributes to influenza epidemics, limited knowledge of the infectiousness of human influenza cases hinders pandemic preparedness. We used airborne viral source strength and indoor CO2 monitoring from the largest human influenza challenge‐transmission tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indoor air 2020-11, Vol.30 (6), p.1189-1198
Hauptverfasser: Bueno de Mesquita, Paul Jacob, Noakes, Catherine J., Milton, Donald K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1198
container_issue 6
container_start_page 1189
container_title Indoor air
container_volume 30
creator Bueno de Mesquita, Paul Jacob
Noakes, Catherine J.
Milton, Donald K.
description Despite evidence that airborne transmission contributes to influenza epidemics, limited knowledge of the infectiousness of human influenza cases hinders pandemic preparedness. We used airborne viral source strength and indoor CO2 monitoring from the largest human influenza challenge‐transmission trial (EMIT: Evaluating Modes of Influenza Transmission, ClinicalTrials.gov number NCT01710111) to compute an airborne infectious dose generation rate q = 0.11 (95% CI 0.088, 0.12)/h and calculate the quantity of airborne virus per infectious dose σ = 1.4E + 5 RNA copies/quantum (95% CI 9.9E + 4, 1.8E + 5). We then compared these calculated values to available data on influenza airborne infectious dose from several previous studies, and applied the values to dormitory room environments to predict probability of transmission between roommates. Transmission risk from typical, moderately to severely symptomatic influenza cases is dramatically decreased by exposure reduction via increasing indoor air ventilation. The minority of cases who shed the most virus (ie, supershedders) may pose great risk even in well‐ventilated spaces. Our modeling method and estimated infectiousness provide a ground work for (a) epidemiologic studies of transmission in non‐experimental settings and (b) evaluation of the extent to which airborne exposure control strategies could limit transmission risk.
doi_str_mv 10.1111/ina.12701
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463068158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5091-f95ed96d4180510beca593958058b787a91f7b6e94bcbb25d17b691c28e5ba8a3</originalsourceid><addsrcrecordid>eNp1kc9qFTEUxoMo9lpd-AIy4EYX057MTP5thFLUFopFUFyGk9zMvSm5SU1mKteVj-Az-iSmvbVYwWxOPs6Pjy_5CHlO4YDWc-gjHtBOAH1AFpQDtMC5fEgWoIC1XA1ijzwp5QKAil71j8le37GhkwoW5MvHGePkJ5z8lWvQ5WR8CmnlbYMRw7b40qSx3hsfxzC7-B2b9byp2q4xBBdX7tePn1PGWDa-FJ9iM2WP4Sl5NGIo7tnt3Cef3739dHzSnp2_Pz0-OmstA0XbUTG3VHw5UAmMgnEWmeoVq0oaIQUqOgrDnRqMNaZjS1qVoraTjhmU2O-TNzvfy9ls3NK6WLMEfZn9BvNWJ_T6_ib6tV6lKy24FJ3oq8GrW4Ocvs6uTLq-w7oQMLo0F90NdAAAxkVFX_6DXqQ511-6pngPXFImK_V6R9mcSsluvAtDQV_XpWtd-qauyr74O_0d-aefChzugG8-uO3_nfTph6Od5W-loaGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463068158</pqid></control><display><type>article</type><title>Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bueno de Mesquita, Paul Jacob ; Noakes, Catherine J. ; Milton, Donald K.</creator><creatorcontrib>Bueno de Mesquita, Paul Jacob ; Noakes, Catherine J. ; Milton, Donald K.</creatorcontrib><description>Despite evidence that airborne transmission contributes to influenza epidemics, limited knowledge of the infectiousness of human influenza cases hinders pandemic preparedness. We used airborne viral source strength and indoor CO2 monitoring from the largest human influenza challenge‐transmission trial (EMIT: Evaluating Modes of Influenza Transmission, ClinicalTrials.gov number NCT01710111) to compute an airborne infectious dose generation rate q = 0.11 (95% CI 0.088, 0.12)/h and calculate the quantity of airborne virus per infectious dose σ = 1.4E + 5 RNA copies/quantum (95% CI 9.9E + 4, 1.8E + 5). We then compared these calculated values to available data on influenza airborne infectious dose from several previous studies, and applied the values to dormitory room environments to predict probability of transmission between roommates. Transmission risk from typical, moderately to severely symptomatic influenza cases is dramatically decreased by exposure reduction via increasing indoor air ventilation. The minority of cases who shed the most virus (ie, supershedders) may pose great risk even in well‐ventilated spaces. Our modeling method and estimated infectiousness provide a ground work for (a) epidemiologic studies of transmission in non‐experimental settings and (b) evaluation of the extent to which airborne exposure control strategies could limit transmission risk.</description><identifier>ISSN: 0905-6947</identifier><identifier>ISSN: 1600-0668</identifier><identifier>EISSN: 1600-0668</identifier><identifier>DOI: 10.1111/ina.12701</identifier><identifier>PMID: 32542890</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>Aerosols ; Air Pollution, Indoor - statistics &amp; numerical data ; airborne infection ; Carbon dioxide ; Disease transmission ; Dosage ; Epidemics ; Epidemiology ; Exposure ; Humans ; Indoor environments ; Influenza ; Influenza virus ; Influenza, Human - transmission ; Original ; Pandemics ; rebreathed air ; Ribonucleic acid ; Risk ; risk assessment ; RNA ; transmission ; Ventilation ; Viruses</subject><ispartof>Indoor air, 2020-11, Vol.30 (6), p.1189-1198</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons Ltd</rights><rights>2020 The Authors. Indoor Air published by John Wiley &amp; Sons Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5091-f95ed96d4180510beca593958058b787a91f7b6e94bcbb25d17b691c28e5ba8a3</citedby><cites>FETCH-LOGICAL-c5091-f95ed96d4180510beca593958058b787a91f7b6e94bcbb25d17b691c28e5ba8a3</cites><orcidid>0000-0002-0550-7834 ; 0000-0003-3084-7467 ; 0000-0001-5991-0138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fina.12701$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fina.12701$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32542890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bueno de Mesquita, Paul Jacob</creatorcontrib><creatorcontrib>Noakes, Catherine J.</creatorcontrib><creatorcontrib>Milton, Donald K.</creatorcontrib><title>Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial</title><title>Indoor air</title><addtitle>Indoor Air</addtitle><description>Despite evidence that airborne transmission contributes to influenza epidemics, limited knowledge of the infectiousness of human influenza cases hinders pandemic preparedness. We used airborne viral source strength and indoor CO2 monitoring from the largest human influenza challenge‐transmission trial (EMIT: Evaluating Modes of Influenza Transmission, ClinicalTrials.gov number NCT01710111) to compute an airborne infectious dose generation rate q = 0.11 (95% CI 0.088, 0.12)/h and calculate the quantity of airborne virus per infectious dose σ = 1.4E + 5 RNA copies/quantum (95% CI 9.9E + 4, 1.8E + 5). We then compared these calculated values to available data on influenza airborne infectious dose from several previous studies, and applied the values to dormitory room environments to predict probability of transmission between roommates. Transmission risk from typical, moderately to severely symptomatic influenza cases is dramatically decreased by exposure reduction via increasing indoor air ventilation. The minority of cases who shed the most virus (ie, supershedders) may pose great risk even in well‐ventilated spaces. Our modeling method and estimated infectiousness provide a ground work for (a) epidemiologic studies of transmission in non‐experimental settings and (b) evaluation of the extent to which airborne exposure control strategies could limit transmission risk.</description><subject>Aerosols</subject><subject>Air Pollution, Indoor - statistics &amp; numerical data</subject><subject>airborne infection</subject><subject>Carbon dioxide</subject><subject>Disease transmission</subject><subject>Dosage</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Exposure</subject><subject>Humans</subject><subject>Indoor environments</subject><subject>Influenza</subject><subject>Influenza virus</subject><subject>Influenza, Human - transmission</subject><subject>Original</subject><subject>Pandemics</subject><subject>rebreathed air</subject><subject>Ribonucleic acid</subject><subject>Risk</subject><subject>risk assessment</subject><subject>RNA</subject><subject>transmission</subject><subject>Ventilation</subject><subject>Viruses</subject><issn>0905-6947</issn><issn>1600-0668</issn><issn>1600-0668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9qFTEUxoMo9lpd-AIy4EYX057MTP5thFLUFopFUFyGk9zMvSm5SU1mKteVj-Az-iSmvbVYwWxOPs6Pjy_5CHlO4YDWc-gjHtBOAH1AFpQDtMC5fEgWoIC1XA1ijzwp5QKAil71j8le37GhkwoW5MvHGePkJ5z8lWvQ5WR8CmnlbYMRw7b40qSx3hsfxzC7-B2b9byp2q4xBBdX7tePn1PGWDa-FJ9iM2WP4Sl5NGIo7tnt3Cef3739dHzSnp2_Pz0-OmstA0XbUTG3VHw5UAmMgnEWmeoVq0oaIQUqOgrDnRqMNaZjS1qVoraTjhmU2O-TNzvfy9ls3NK6WLMEfZn9BvNWJ_T6_ib6tV6lKy24FJ3oq8GrW4Ocvs6uTLq-w7oQMLo0F90NdAAAxkVFX_6DXqQ511-6pngPXFImK_V6R9mcSsluvAtDQV_XpWtd-qauyr74O_0d-aefChzugG8-uO3_nfTph6Od5W-loaGA</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Bueno de Mesquita, Paul Jacob</creator><creator>Noakes, Catherine J.</creator><creator>Milton, Donald K.</creator><general>Hindawi Limited</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0550-7834</orcidid><orcidid>https://orcid.org/0000-0003-3084-7467</orcidid><orcidid>https://orcid.org/0000-0001-5991-0138</orcidid></search><sort><creationdate>202011</creationdate><title>Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial</title><author>Bueno de Mesquita, Paul Jacob ; Noakes, Catherine J. ; Milton, Donald K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5091-f95ed96d4180510beca593958058b787a91f7b6e94bcbb25d17b691c28e5ba8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosols</topic><topic>Air Pollution, Indoor - statistics &amp; numerical data</topic><topic>airborne infection</topic><topic>Carbon dioxide</topic><topic>Disease transmission</topic><topic>Dosage</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Exposure</topic><topic>Humans</topic><topic>Indoor environments</topic><topic>Influenza</topic><topic>Influenza virus</topic><topic>Influenza, Human - transmission</topic><topic>Original</topic><topic>Pandemics</topic><topic>rebreathed air</topic><topic>Ribonucleic acid</topic><topic>Risk</topic><topic>risk assessment</topic><topic>RNA</topic><topic>transmission</topic><topic>Ventilation</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bueno de Mesquita, Paul Jacob</creatorcontrib><creatorcontrib>Noakes, Catherine J.</creatorcontrib><creatorcontrib>Milton, Donald K.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Indoor air</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bueno de Mesquita, Paul Jacob</au><au>Noakes, Catherine J.</au><au>Milton, Donald K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial</atitle><jtitle>Indoor air</jtitle><addtitle>Indoor Air</addtitle><date>2020-11</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>1189</spage><epage>1198</epage><pages>1189-1198</pages><issn>0905-6947</issn><issn>1600-0668</issn><eissn>1600-0668</eissn><abstract>Despite evidence that airborne transmission contributes to influenza epidemics, limited knowledge of the infectiousness of human influenza cases hinders pandemic preparedness. We used airborne viral source strength and indoor CO2 monitoring from the largest human influenza challenge‐transmission trial (EMIT: Evaluating Modes of Influenza Transmission, ClinicalTrials.gov number NCT01710111) to compute an airborne infectious dose generation rate q = 0.11 (95% CI 0.088, 0.12)/h and calculate the quantity of airborne virus per infectious dose σ = 1.4E + 5 RNA copies/quantum (95% CI 9.9E + 4, 1.8E + 5). We then compared these calculated values to available data on influenza airborne infectious dose from several previous studies, and applied the values to dormitory room environments to predict probability of transmission between roommates. Transmission risk from typical, moderately to severely symptomatic influenza cases is dramatically decreased by exposure reduction via increasing indoor air ventilation. The minority of cases who shed the most virus (ie, supershedders) may pose great risk even in well‐ventilated spaces. Our modeling method and estimated infectiousness provide a ground work for (a) epidemiologic studies of transmission in non‐experimental settings and (b) evaluation of the extent to which airborne exposure control strategies could limit transmission risk.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>32542890</pmid><doi>10.1111/ina.12701</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0550-7834</orcidid><orcidid>https://orcid.org/0000-0003-3084-7467</orcidid><orcidid>https://orcid.org/0000-0001-5991-0138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0905-6947
ispartof Indoor air, 2020-11, Vol.30 (6), p.1189-1198
issn 0905-6947
1600-0668
1600-0668
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687273
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aerosols
Air Pollution, Indoor - statistics & numerical data
airborne infection
Carbon dioxide
Disease transmission
Dosage
Epidemics
Epidemiology
Exposure
Humans
Indoor environments
Influenza
Influenza virus
Influenza, Human - transmission
Original
Pandemics
rebreathed air
Ribonucleic acid
Risk
risk assessment
RNA
transmission
Ventilation
Viruses
title Quantitative aerobiologic analysis of an influenza human challenge‐transmission trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20aerobiologic%20analysis%20of%20an%20influenza%20human%20challenge%E2%80%90transmission%20trial&rft.jtitle=Indoor%20air&rft.au=Bueno%20de%20Mesquita,%20Paul%20Jacob&rft.date=2020-11&rft.volume=30&rft.issue=6&rft.spage=1189&rft.epage=1198&rft.pages=1189-1198&rft.issn=0905-6947&rft.eissn=1600-0668&rft_id=info:doi/10.1111/ina.12701&rft_dat=%3Cproquest_pubme%3E2463068158%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463068158&rft_id=info:pmid/32542890&rfr_iscdi=true