Corticosteroids alleviate lipopolysaccharide‐induced inflammation and lung injury via inhibiting NLRP3‐inflammasome activation

The role of corticosteroids in acute lung injury (ALI) remains uncertain. This study aims to determine the underlying mechanisms of corticosteroid treatment for lipopolysaccharide (LPS)‐induced inflammation and ALI. We used corticosteroid treatment for LPS‐induced murine ALI model to investigate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2020-11, Vol.24 (21), p.12716-12725
Hauptverfasser: Yang, Jia‐Wei, Mao, Bei, Tao, Ru‐Jia, Fan, Li‐Chao, Lu, Hai‐Wen, Ge, Bao‐Xue, Xu, Jin‐Fu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12725
container_issue 21
container_start_page 12716
container_title Journal of cellular and molecular medicine
container_volume 24
creator Yang, Jia‐Wei
Mao, Bei
Tao, Ru‐Jia
Fan, Li‐Chao
Lu, Hai‐Wen
Ge, Bao‐Xue
Xu, Jin‐Fu
description The role of corticosteroids in acute lung injury (ALI) remains uncertain. This study aims to determine the underlying mechanisms of corticosteroid treatment for lipopolysaccharide (LPS)‐induced inflammation and ALI. We used corticosteroid treatment for LPS‐induced murine ALI model to investigate the effect of corticosteroid on ALI in vivo. Moreover, LPS‐stimulated macrophages were used to explore the specific anti‐inflammatory effects of corticosteroids on NLRP3‐inflammasome in vitro. We found corticosteroids attenuated LPS‐induced ALI, which manifested in reduction of the alveolar structure destruction, the infiltration of neutrophils and the inflammatory cytokines release of interleukin‐1β (IL‐1β) and interleukin‐18 (IL‐18) in Lung. In vitro, when NLRP3‐inflammasome was knocked out, inflammatory response of caspase‐1 activation and IL‐1β secretion was obviously declined. Further exploration, our results showed that when corticosteroid preprocessed macrophages before LPS primed, it obviously inhibited the activation of caspase‐1 and the maturation of IL‐1β, which depended on inhibiting the nuclear factor‐κB (NF‐κB) signal pathway activation. However, when corticosteroids intervened the LPS‐primed macrophages, it also negatively regulated NLRP3‐inflammasome activation through suppressing mitochondrial reactive oxygen species (mtROS) production. Our results revealed that corticosteroids played a protection role in LPS‐induced inflammation and ALI by suppressing both NF‐κB signal pathway and mtROS‐dependent NLRP3 inflammasome activation.
doi_str_mv 10.1111/jcmm.15849
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7686976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463936175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4489-b569cd0a3d9013516a5a052c76fa5d241b0ed4a02894dcf7b0765c933692991a3</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoMo7rp68QGkwYsIsyaddNK5CDL4l1kV0XOoTtI7GdLJbNI9MjfxCXxGn8Ts9LioB3OpovL7Pqr4EHpI8Dkp79lGD8M5aVomb6HTUusFk5TdPvakpe0JupfzBmPKCZV30QmtpRCUt6fo-zKm0emYR5uiM7kC7-3OwWgr77ZxG_0-g9ZrSM7Yn99-uGAmbU3lQu9hGGB0MVQQTOWncFmmmyntq6Iv7dp1bnRl-n716SM9aGdNjoOtQI9ud5DfR3d68Nk-ONYz9OXVy8_LN4vVh9dvly9WC81YKxddw6U2GKiRmNCGcGgAN7UWvIfG1Ix02BoGuG4lM7oXHRa80ZJSLmspCdAz9Hz23U7dYI22YUzg1Ta5AdJeRXDq75_g1uoy7pTgLZeCF4MnR4MUryabRzW4rK33EGycsqoZ41xg1tKCPv4H3cQphXJeoTiVJQjRFOrpTOkUc062v1mGYHUdrbqOVh2iLfCjP9e_QX9nWQAyA1-dt_v_WKl3y4uL2fQX3WO0YA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463936175</pqid></control><display><type>article</type><title>Corticosteroids alleviate lipopolysaccharide‐induced inflammation and lung injury via inhibiting NLRP3‐inflammasome activation</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Yang, Jia‐Wei ; Mao, Bei ; Tao, Ru‐Jia ; Fan, Li‐Chao ; Lu, Hai‐Wen ; Ge, Bao‐Xue ; Xu, Jin‐Fu</creator><creatorcontrib>Yang, Jia‐Wei ; Mao, Bei ; Tao, Ru‐Jia ; Fan, Li‐Chao ; Lu, Hai‐Wen ; Ge, Bao‐Xue ; Xu, Jin‐Fu</creatorcontrib><description>The role of corticosteroids in acute lung injury (ALI) remains uncertain. This study aims to determine the underlying mechanisms of corticosteroid treatment for lipopolysaccharide (LPS)‐induced inflammation and ALI. We used corticosteroid treatment for LPS‐induced murine ALI model to investigate the effect of corticosteroid on ALI in vivo. Moreover, LPS‐stimulated macrophages were used to explore the specific anti‐inflammatory effects of corticosteroids on NLRP3‐inflammasome in vitro. We found corticosteroids attenuated LPS‐induced ALI, which manifested in reduction of the alveolar structure destruction, the infiltration of neutrophils and the inflammatory cytokines release of interleukin‐1β (IL‐1β) and interleukin‐18 (IL‐18) in Lung. In vitro, when NLRP3‐inflammasome was knocked out, inflammatory response of caspase‐1 activation and IL‐1β secretion was obviously declined. Further exploration, our results showed that when corticosteroid preprocessed macrophages before LPS primed, it obviously inhibited the activation of caspase‐1 and the maturation of IL‐1β, which depended on inhibiting the nuclear factor‐κB (NF‐κB) signal pathway activation. However, when corticosteroids intervened the LPS‐primed macrophages, it also negatively regulated NLRP3‐inflammasome activation through suppressing mitochondrial reactive oxygen species (mtROS) production. Our results revealed that corticosteroids played a protection role in LPS‐induced inflammation and ALI by suppressing both NF‐κB signal pathway and mtROS‐dependent NLRP3 inflammasome activation.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.15849</identifier><identifier>PMID: 32977368</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Acute Lung Injury ; Adrenal Cortex Hormones - pharmacology ; Adrenal Cortex Hormones - therapeutic use ; Alveoli ; Animals ; Caspase ; Caspase 1 - metabolism ; Corticosteroids ; Cytokines ; Dexamethasone - pharmacology ; Dexamethasone - therapeutic use ; Enzyme Activation - drug effects ; Experiments ; Flow cytometry ; Inflammasomes ; Inflammasomes - antagonists &amp; inhibitors ; Inflammasomes - metabolism ; Inflammation ; Inflammation - chemically induced ; Inflammation - drug therapy ; Inflammation - metabolism ; Interleukin-18 - metabolism ; Leukocytes (neutrophilic) ; Lipopolysaccharides ; Lungs ; Macrophages ; Mice, Inbred C57BL ; Microscopy ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; mitochondrial reactive oxygen species ; Models, Biological ; Neutrophils ; NF-kappa B - metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein - antagonists &amp; inhibitors ; NLR Family, Pyrin Domain-Containing 3 Protein - metabolism ; NLRP3‐inflammasome ; Original ; Pathogens ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Signal Transduction ; Software</subject><ispartof>Journal of cellular and molecular medicine, 2020-11, Vol.24 (21), p.12716-12725</ispartof><rights>2020 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd</rights><rights>2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4489-b569cd0a3d9013516a5a052c76fa5d241b0ed4a02894dcf7b0765c933692991a3</citedby><cites>FETCH-LOGICAL-c4489-b569cd0a3d9013516a5a052c76fa5d241b0ed4a02894dcf7b0765c933692991a3</cites><orcidid>0000-0002-8039-8973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686976/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686976/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32977368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jia‐Wei</creatorcontrib><creatorcontrib>Mao, Bei</creatorcontrib><creatorcontrib>Tao, Ru‐Jia</creatorcontrib><creatorcontrib>Fan, Li‐Chao</creatorcontrib><creatorcontrib>Lu, Hai‐Wen</creatorcontrib><creatorcontrib>Ge, Bao‐Xue</creatorcontrib><creatorcontrib>Xu, Jin‐Fu</creatorcontrib><title>Corticosteroids alleviate lipopolysaccharide‐induced inflammation and lung injury via inhibiting NLRP3‐inflammasome activation</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>The role of corticosteroids in acute lung injury (ALI) remains uncertain. This study aims to determine the underlying mechanisms of corticosteroid treatment for lipopolysaccharide (LPS)‐induced inflammation and ALI. We used corticosteroid treatment for LPS‐induced murine ALI model to investigate the effect of corticosteroid on ALI in vivo. Moreover, LPS‐stimulated macrophages were used to explore the specific anti‐inflammatory effects of corticosteroids on NLRP3‐inflammasome in vitro. We found corticosteroids attenuated LPS‐induced ALI, which manifested in reduction of the alveolar structure destruction, the infiltration of neutrophils and the inflammatory cytokines release of interleukin‐1β (IL‐1β) and interleukin‐18 (IL‐18) in Lung. In vitro, when NLRP3‐inflammasome was knocked out, inflammatory response of caspase‐1 activation and IL‐1β secretion was obviously declined. Further exploration, our results showed that when corticosteroid preprocessed macrophages before LPS primed, it obviously inhibited the activation of caspase‐1 and the maturation of IL‐1β, which depended on inhibiting the nuclear factor‐κB (NF‐κB) signal pathway activation. However, when corticosteroids intervened the LPS‐primed macrophages, it also negatively regulated NLRP3‐inflammasome activation through suppressing mitochondrial reactive oxygen species (mtROS) production. Our results revealed that corticosteroids played a protection role in LPS‐induced inflammation and ALI by suppressing both NF‐κB signal pathway and mtROS‐dependent NLRP3 inflammasome activation.</description><subject>Acute Lung Injury</subject><subject>Adrenal Cortex Hormones - pharmacology</subject><subject>Adrenal Cortex Hormones - therapeutic use</subject><subject>Alveoli</subject><subject>Animals</subject><subject>Caspase</subject><subject>Caspase 1 - metabolism</subject><subject>Corticosteroids</subject><subject>Cytokines</subject><subject>Dexamethasone - pharmacology</subject><subject>Dexamethasone - therapeutic use</subject><subject>Enzyme Activation - drug effects</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Inflammasomes</subject><subject>Inflammasomes - antagonists &amp; inhibitors</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>Inflammation - chemically induced</subject><subject>Inflammation - drug therapy</subject><subject>Inflammation - metabolism</subject><subject>Interleukin-18 - metabolism</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lipopolysaccharides</subject><subject>Lungs</subject><subject>Macrophages</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial reactive oxygen species</subject><subject>Models, Biological</subject><subject>Neutrophils</subject><subject>NF-kappa B - metabolism</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - antagonists &amp; inhibitors</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</subject><subject>NLRP3‐inflammasome</subject><subject>Original</subject><subject>Pathogens</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Signal Transduction</subject><subject>Software</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc-KFDEQxoMo7rp68QGkwYsIsyaddNK5CDL4l1kV0XOoTtI7GdLJbNI9MjfxCXxGn8Ts9LioB3OpovL7Pqr4EHpI8Dkp79lGD8M5aVomb6HTUusFk5TdPvakpe0JupfzBmPKCZV30QmtpRCUt6fo-zKm0emYR5uiM7kC7-3OwWgr77ZxG_0-g9ZrSM7Yn99-uGAmbU3lQu9hGGB0MVQQTOWncFmmmyntq6Iv7dp1bnRl-n716SM9aGdNjoOtQI9ud5DfR3d68Nk-ONYz9OXVy8_LN4vVh9dvly9WC81YKxddw6U2GKiRmNCGcGgAN7UWvIfG1Ix02BoGuG4lM7oXHRa80ZJSLmspCdAz9Hz23U7dYI22YUzg1Ta5AdJeRXDq75_g1uoy7pTgLZeCF4MnR4MUryabRzW4rK33EGycsqoZ41xg1tKCPv4H3cQphXJeoTiVJQjRFOrpTOkUc062v1mGYHUdrbqOVh2iLfCjP9e_QX9nWQAyA1-dt_v_WKl3y4uL2fQX3WO0YA</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Yang, Jia‐Wei</creator><creator>Mao, Bei</creator><creator>Tao, Ru‐Jia</creator><creator>Fan, Li‐Chao</creator><creator>Lu, Hai‐Wen</creator><creator>Ge, Bao‐Xue</creator><creator>Xu, Jin‐Fu</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8039-8973</orcidid></search><sort><creationdate>202011</creationdate><title>Corticosteroids alleviate lipopolysaccharide‐induced inflammation and lung injury via inhibiting NLRP3‐inflammasome activation</title><author>Yang, Jia‐Wei ; Mao, Bei ; Tao, Ru‐Jia ; Fan, Li‐Chao ; Lu, Hai‐Wen ; Ge, Bao‐Xue ; Xu, Jin‐Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4489-b569cd0a3d9013516a5a052c76fa5d241b0ed4a02894dcf7b0765c933692991a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acute Lung Injury</topic><topic>Adrenal Cortex Hormones - pharmacology</topic><topic>Adrenal Cortex Hormones - therapeutic use</topic><topic>Alveoli</topic><topic>Animals</topic><topic>Caspase</topic><topic>Caspase 1 - metabolism</topic><topic>Corticosteroids</topic><topic>Cytokines</topic><topic>Dexamethasone - pharmacology</topic><topic>Dexamethasone - therapeutic use</topic><topic>Enzyme Activation - drug effects</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Inflammasomes</topic><topic>Inflammasomes - antagonists &amp; inhibitors</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>Inflammation - chemically induced</topic><topic>Inflammation - drug therapy</topic><topic>Inflammation - metabolism</topic><topic>Interleukin-18 - metabolism</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lipopolysaccharides</topic><topic>Lungs</topic><topic>Macrophages</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial reactive oxygen species</topic><topic>Models, Biological</topic><topic>Neutrophils</topic><topic>NF-kappa B - metabolism</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - antagonists &amp; inhibitors</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</topic><topic>NLRP3‐inflammasome</topic><topic>Original</topic><topic>Pathogens</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Signal Transduction</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jia‐Wei</creatorcontrib><creatorcontrib>Mao, Bei</creatorcontrib><creatorcontrib>Tao, Ru‐Jia</creatorcontrib><creatorcontrib>Fan, Li‐Chao</creatorcontrib><creatorcontrib>Lu, Hai‐Wen</creatorcontrib><creatorcontrib>Ge, Bao‐Xue</creatorcontrib><creatorcontrib>Xu, Jin‐Fu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jia‐Wei</au><au>Mao, Bei</au><au>Tao, Ru‐Jia</au><au>Fan, Li‐Chao</au><au>Lu, Hai‐Wen</au><au>Ge, Bao‐Xue</au><au>Xu, Jin‐Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corticosteroids alleviate lipopolysaccharide‐induced inflammation and lung injury via inhibiting NLRP3‐inflammasome activation</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2020-11</date><risdate>2020</risdate><volume>24</volume><issue>21</issue><spage>12716</spage><epage>12725</epage><pages>12716-12725</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>The role of corticosteroids in acute lung injury (ALI) remains uncertain. This study aims to determine the underlying mechanisms of corticosteroid treatment for lipopolysaccharide (LPS)‐induced inflammation and ALI. We used corticosteroid treatment for LPS‐induced murine ALI model to investigate the effect of corticosteroid on ALI in vivo. Moreover, LPS‐stimulated macrophages were used to explore the specific anti‐inflammatory effects of corticosteroids on NLRP3‐inflammasome in vitro. We found corticosteroids attenuated LPS‐induced ALI, which manifested in reduction of the alveolar structure destruction, the infiltration of neutrophils and the inflammatory cytokines release of interleukin‐1β (IL‐1β) and interleukin‐18 (IL‐18) in Lung. In vitro, when NLRP3‐inflammasome was knocked out, inflammatory response of caspase‐1 activation and IL‐1β secretion was obviously declined. Further exploration, our results showed that when corticosteroid preprocessed macrophages before LPS primed, it obviously inhibited the activation of caspase‐1 and the maturation of IL‐1β, which depended on inhibiting the nuclear factor‐κB (NF‐κB) signal pathway activation. However, when corticosteroids intervened the LPS‐primed macrophages, it also negatively regulated NLRP3‐inflammasome activation through suppressing mitochondrial reactive oxygen species (mtROS) production. Our results revealed that corticosteroids played a protection role in LPS‐induced inflammation and ALI by suppressing both NF‐κB signal pathway and mtROS‐dependent NLRP3 inflammasome activation.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32977368</pmid><doi>10.1111/jcmm.15849</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8039-8973</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2020-11, Vol.24 (21), p.12716-12725
issn 1582-1838
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7686976
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Acute Lung Injury
Adrenal Cortex Hormones - pharmacology
Adrenal Cortex Hormones - therapeutic use
Alveoli
Animals
Caspase
Caspase 1 - metabolism
Corticosteroids
Cytokines
Dexamethasone - pharmacology
Dexamethasone - therapeutic use
Enzyme Activation - drug effects
Experiments
Flow cytometry
Inflammasomes
Inflammasomes - antagonists & inhibitors
Inflammasomes - metabolism
Inflammation
Inflammation - chemically induced
Inflammation - drug therapy
Inflammation - metabolism
Interleukin-18 - metabolism
Leukocytes (neutrophilic)
Lipopolysaccharides
Lungs
Macrophages
Mice, Inbred C57BL
Microscopy
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
mitochondrial reactive oxygen species
Models, Biological
Neutrophils
NF-kappa B - metabolism
NLR Family, Pyrin Domain-Containing 3 Protein - antagonists & inhibitors
NLR Family, Pyrin Domain-Containing 3 Protein - metabolism
NLRP3‐inflammasome
Original
Pathogens
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Signal Transduction
Software
title Corticosteroids alleviate lipopolysaccharide‐induced inflammation and lung injury via inhibiting NLRP3‐inflammasome activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corticosteroids%20alleviate%20lipopolysaccharide%E2%80%90induced%20inflammation%20and%20lung%20injury%20via%20inhibiting%20NLRP3%E2%80%90inflammasome%20activation&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Yang,%20Jia%E2%80%90Wei&rft.date=2020-11&rft.volume=24&rft.issue=21&rft.spage=12716&rft.epage=12725&rft.pages=12716-12725&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.15849&rft_dat=%3Cproquest_pubme%3E2463936175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463936175&rft_id=info:pmid/32977368&rfr_iscdi=true