A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development

The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2020-11, Vol.55 (4), p.432-449.e12
Hauptverfasser: Kong, Jennifer H., Young, Cullen B., Pusapati, Ganesh V., Patel, Chandni B., Ho, Sebastian, Krishnan, Arunkumar, Lin, Jiuann-Huey Ivy, Devine, William, Moreau de Bellaing, Anne, Athni, Tejas S., Aravind, L., Gunn, Teresa M., Lo, Cecilia W., Rohatgi, Rajat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449.e12
container_issue 4
container_start_page 432
container_title Developmental cell
container_volume 55
creator Kong, Jennifer H.
Young, Cullen B.
Pusapati, Ganesh V.
Patel, Chandni B.
Ho, Sebastian
Krishnan, Arunkumar
Lin, Jiuann-Huey Ivy
Devine, William
Moreau de Bellaing, Anne
Athni, Tejas S.
Aravind, L.
Gunn, Teresa M.
Lo, Cecilia W.
Rohatgi, Rajat
description The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability. [Display omitted] •A cell-surface ubiquitination pathway negatively regulates Hedgehog signaling strength•This pathway promotes the ubiquitination and downregulation of Smoothened•Defects in this pathway cause limb, heart, and left-right patterning defects•Mutations in genes associated with this pathway show oligogenic inheritance Kong et al. discovered a membrane-tethered ubiquitination pathway that plays a role in the patterning of multiple tissues during development by dampening Hedgehog signaling strength. Defects in this pathway lead to disrupted left-right patterning (called heterotaxy) of the entire body plan, as well as organ-specific defects in the heart, limb, and skeleton.
doi_str_mv 10.1016/j.devcel.2020.08.012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7686252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580720306705</els_id><sourcerecordid>2445971599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1da1360b1d55ca9ac02fe6fc6fac12b1b4c697e3d0a651e41e4739689fb47ff43</originalsourceid><addsrcrecordid>eNp9UcFuFSEUJUZja_UPjJmlmxmBAYbZmDRVW5MajbZLQxi4M4-XGXgF5pn-fWlerboxuQk3l3vOgXMQek1wQzAR77aNhb2BuaGY4gbLBhP6BB0T2cmacE6elp63rOYSd0foRUpbXGBE4ufoqKW9EJJ0x-jnafUFliFqD_UV5A1EsNX14G5Wl53X2QVffdN580vfVt9hWmedIVUXYCfYhKn64SavZ-enSntbxjrm6gPsYQ67BXx-iZ6Nek7w6uE8QdefPl6dXdSXX88_n51e1oaJNtfEatIKPBDLudG9NpiOIEYjRm0IHcjAjOg7aC3WghNgpbq2F7IfB9aNI2tP0PsD724dFrCmSEc9q110i463Kmin_r3xbqOmsFedkIJyWgjePhDEcLNCympxqZg7F1_CmhRljPcd4X1fVtlh1cSQUoTxUYZgdZ-M2qpDMuo-GYWlKskU2Ju_n_gI-h3Fnz9AMWrvIKpkHHgD1kUwWdng_q9wB2sWo7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445971599</pqid></control><display><type>article</type><title>A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kong, Jennifer H. ; Young, Cullen B. ; Pusapati, Ganesh V. ; Patel, Chandni B. ; Ho, Sebastian ; Krishnan, Arunkumar ; Lin, Jiuann-Huey Ivy ; Devine, William ; Moreau de Bellaing, Anne ; Athni, Tejas S. ; Aravind, L. ; Gunn, Teresa M. ; Lo, Cecilia W. ; Rohatgi, Rajat</creator><creatorcontrib>Kong, Jennifer H. ; Young, Cullen B. ; Pusapati, Ganesh V. ; Patel, Chandni B. ; Ho, Sebastian ; Krishnan, Arunkumar ; Lin, Jiuann-Huey Ivy ; Devine, William ; Moreau de Bellaing, Anne ; Athni, Tejas S. ; Aravind, L. ; Gunn, Teresa M. ; Lo, Cecilia W. ; Rohatgi, Rajat</creatorcontrib><description>The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability. [Display omitted] •A cell-surface ubiquitination pathway negatively regulates Hedgehog signaling strength•This pathway promotes the ubiquitination and downregulation of Smoothened•Defects in this pathway cause limb, heart, and left-right patterning defects•Mutations in genes associated with this pathway show oligogenic inheritance Kong et al. discovered a membrane-tethered ubiquitination pathway that plays a role in the patterning of multiple tissues during development by dampening Hedgehog signaling strength. Defects in this pathway lead to disrupted left-right patterning (called heterotaxy) of the entire body plan, as well as organ-specific defects in the heart, limb, and skeleton.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2020.08.012</identifier><identifier>PMID: 32966817</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; Animals ; congenital heart disease ; Embryo, Mammalian - metabolism ; Epistasis, Genetic ; Gene Dosage ; Heart - embryology ; heart development ; Hedgehog Proteins - metabolism ; Hedgehog signaling ; heterotaxy ; left-right patterning ; Membrane Proteins - metabolism ; Mice ; morphogen ; Mutation - genetics ; NIH 3T3 Cells ; oligogenic inheritance ; Phenotype ; primary cilia ; Protein Binding ; Signal Transduction ; Smoothened ; Smoothened Receptor - metabolism ; ubiquitin ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination</subject><ispartof>Developmental cell, 2020-11, Vol.55 (4), p.432-449.e12</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1da1360b1d55ca9ac02fe6fc6fac12b1b4c697e3d0a651e41e4739689fb47ff43</citedby><cites>FETCH-LOGICAL-c463t-1da1360b1d55ca9ac02fe6fc6fac12b1b4c697e3d0a651e41e4739689fb47ff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.devcel.2020.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32966817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Jennifer H.</creatorcontrib><creatorcontrib>Young, Cullen B.</creatorcontrib><creatorcontrib>Pusapati, Ganesh V.</creatorcontrib><creatorcontrib>Patel, Chandni B.</creatorcontrib><creatorcontrib>Ho, Sebastian</creatorcontrib><creatorcontrib>Krishnan, Arunkumar</creatorcontrib><creatorcontrib>Lin, Jiuann-Huey Ivy</creatorcontrib><creatorcontrib>Devine, William</creatorcontrib><creatorcontrib>Moreau de Bellaing, Anne</creatorcontrib><creatorcontrib>Athni, Tejas S.</creatorcontrib><creatorcontrib>Aravind, L.</creatorcontrib><creatorcontrib>Gunn, Teresa M.</creatorcontrib><creatorcontrib>Lo, Cecilia W.</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><title>A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability. [Display omitted] •A cell-surface ubiquitination pathway negatively regulates Hedgehog signaling strength•This pathway promotes the ubiquitination and downregulation of Smoothened•Defects in this pathway cause limb, heart, and left-right patterning defects•Mutations in genes associated with this pathway show oligogenic inheritance Kong et al. discovered a membrane-tethered ubiquitination pathway that plays a role in the patterning of multiple tissues during development by dampening Hedgehog signaling strength. Defects in this pathway lead to disrupted left-right patterning (called heterotaxy) of the entire body plan, as well as organ-specific defects in the heart, limb, and skeleton.</description><subject>Alleles</subject><subject>Animals</subject><subject>congenital heart disease</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Epistasis, Genetic</subject><subject>Gene Dosage</subject><subject>Heart - embryology</subject><subject>heart development</subject><subject>Hedgehog Proteins - metabolism</subject><subject>Hedgehog signaling</subject><subject>heterotaxy</subject><subject>left-right patterning</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>morphogen</subject><subject>Mutation - genetics</subject><subject>NIH 3T3 Cells</subject><subject>oligogenic inheritance</subject><subject>Phenotype</subject><subject>primary cilia</subject><subject>Protein Binding</subject><subject>Signal Transduction</subject><subject>Smoothened</subject><subject>Smoothened Receptor - metabolism</subject><subject>ubiquitin</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFuFSEUJUZja_UPjJmlmxmBAYbZmDRVW5MajbZLQxi4M4-XGXgF5pn-fWlerboxuQk3l3vOgXMQek1wQzAR77aNhb2BuaGY4gbLBhP6BB0T2cmacE6elp63rOYSd0foRUpbXGBE4ufoqKW9EJJ0x-jnafUFliFqD_UV5A1EsNX14G5Wl53X2QVffdN580vfVt9hWmedIVUXYCfYhKn64SavZ-enSntbxjrm6gPsYQ67BXx-iZ6Nek7w6uE8QdefPl6dXdSXX88_n51e1oaJNtfEatIKPBDLudG9NpiOIEYjRm0IHcjAjOg7aC3WghNgpbq2F7IfB9aNI2tP0PsD724dFrCmSEc9q110i463Kmin_r3xbqOmsFedkIJyWgjePhDEcLNCympxqZg7F1_CmhRljPcd4X1fVtlh1cSQUoTxUYZgdZ-M2qpDMuo-GYWlKskU2Ju_n_gI-h3Fnz9AMWrvIKpkHHgD1kUwWdng_q9wB2sWo7s</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Kong, Jennifer H.</creator><creator>Young, Cullen B.</creator><creator>Pusapati, Ganesh V.</creator><creator>Patel, Chandni B.</creator><creator>Ho, Sebastian</creator><creator>Krishnan, Arunkumar</creator><creator>Lin, Jiuann-Huey Ivy</creator><creator>Devine, William</creator><creator>Moreau de Bellaing, Anne</creator><creator>Athni, Tejas S.</creator><creator>Aravind, L.</creator><creator>Gunn, Teresa M.</creator><creator>Lo, Cecilia W.</creator><creator>Rohatgi, Rajat</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201123</creationdate><title>A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development</title><author>Kong, Jennifer H. ; Young, Cullen B. ; Pusapati, Ganesh V. ; Patel, Chandni B. ; Ho, Sebastian ; Krishnan, Arunkumar ; Lin, Jiuann-Huey Ivy ; Devine, William ; Moreau de Bellaing, Anne ; Athni, Tejas S. ; Aravind, L. ; Gunn, Teresa M. ; Lo, Cecilia W. ; Rohatgi, Rajat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1da1360b1d55ca9ac02fe6fc6fac12b1b4c697e3d0a651e41e4739689fb47ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>congenital heart disease</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Epistasis, Genetic</topic><topic>Gene Dosage</topic><topic>Heart - embryology</topic><topic>heart development</topic><topic>Hedgehog Proteins - metabolism</topic><topic>Hedgehog signaling</topic><topic>heterotaxy</topic><topic>left-right patterning</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>morphogen</topic><topic>Mutation - genetics</topic><topic>NIH 3T3 Cells</topic><topic>oligogenic inheritance</topic><topic>Phenotype</topic><topic>primary cilia</topic><topic>Protein Binding</topic><topic>Signal Transduction</topic><topic>Smoothened</topic><topic>Smoothened Receptor - metabolism</topic><topic>ubiquitin</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Jennifer H.</creatorcontrib><creatorcontrib>Young, Cullen B.</creatorcontrib><creatorcontrib>Pusapati, Ganesh V.</creatorcontrib><creatorcontrib>Patel, Chandni B.</creatorcontrib><creatorcontrib>Ho, Sebastian</creatorcontrib><creatorcontrib>Krishnan, Arunkumar</creatorcontrib><creatorcontrib>Lin, Jiuann-Huey Ivy</creatorcontrib><creatorcontrib>Devine, William</creatorcontrib><creatorcontrib>Moreau de Bellaing, Anne</creatorcontrib><creatorcontrib>Athni, Tejas S.</creatorcontrib><creatorcontrib>Aravind, L.</creatorcontrib><creatorcontrib>Gunn, Teresa M.</creatorcontrib><creatorcontrib>Lo, Cecilia W.</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Jennifer H.</au><au>Young, Cullen B.</au><au>Pusapati, Ganesh V.</au><au>Patel, Chandni B.</au><au>Ho, Sebastian</au><au>Krishnan, Arunkumar</au><au>Lin, Jiuann-Huey Ivy</au><au>Devine, William</au><au>Moreau de Bellaing, Anne</au><au>Athni, Tejas S.</au><au>Aravind, L.</au><au>Gunn, Teresa M.</au><au>Lo, Cecilia W.</au><au>Rohatgi, Rajat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2020-11-23</date><risdate>2020</risdate><volume>55</volume><issue>4</issue><spage>432</spage><epage>449.e12</epage><pages>432-449.e12</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability. [Display omitted] •A cell-surface ubiquitination pathway negatively regulates Hedgehog signaling strength•This pathway promotes the ubiquitination and downregulation of Smoothened•Defects in this pathway cause limb, heart, and left-right patterning defects•Mutations in genes associated with this pathway show oligogenic inheritance Kong et al. discovered a membrane-tethered ubiquitination pathway that plays a role in the patterning of multiple tissues during development by dampening Hedgehog signaling strength. Defects in this pathway lead to disrupted left-right patterning (called heterotaxy) of the entire body plan, as well as organ-specific defects in the heart, limb, and skeleton.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32966817</pmid><doi>10.1016/j.devcel.2020.08.012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-5807
ispartof Developmental cell, 2020-11, Vol.55 (4), p.432-449.e12
issn 1534-5807
1878-1551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7686252
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Alleles
Animals
congenital heart disease
Embryo, Mammalian - metabolism
Epistasis, Genetic
Gene Dosage
Heart - embryology
heart development
Hedgehog Proteins - metabolism
Hedgehog signaling
heterotaxy
left-right patterning
Membrane Proteins - metabolism
Mice
morphogen
Mutation - genetics
NIH 3T3 Cells
oligogenic inheritance
Phenotype
primary cilia
Protein Binding
Signal Transduction
Smoothened
Smoothened Receptor - metabolism
ubiquitin
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
title A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Membrane-Tethered%20Ubiquitination%20Pathway%20Regulates%20Hedgehog%20Signaling%20and%20Heart%20Development&rft.jtitle=Developmental%20cell&rft.au=Kong,%20Jennifer%20H.&rft.date=2020-11-23&rft.volume=55&rft.issue=4&rft.spage=432&rft.epage=449.e12&rft.pages=432-449.e12&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2020.08.012&rft_dat=%3Cproquest_pubme%3E2445971599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445971599&rft_id=info:pmid/32966817&rft_els_id=S1534580720306705&rfr_iscdi=true