A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development
The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of...
Gespeichert in:
Veröffentlicht in: | Developmental cell 2020-11, Vol.55 (4), p.432-449.e12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 449.e12 |
---|---|
container_issue | 4 |
container_start_page | 432 |
container_title | Developmental cell |
container_volume | 55 |
creator | Kong, Jennifer H. Young, Cullen B. Pusapati, Ganesh V. Patel, Chandni B. Ho, Sebastian Krishnan, Arunkumar Lin, Jiuann-Huey Ivy Devine, William Moreau de Bellaing, Anne Athni, Tejas S. Aravind, L. Gunn, Teresa M. Lo, Cecilia W. Rohatgi, Rajat |
description | The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability.
[Display omitted]
•A cell-surface ubiquitination pathway negatively regulates Hedgehog signaling strength•This pathway promotes the ubiquitination and downregulation of Smoothened•Defects in this pathway cause limb, heart, and left-right patterning defects•Mutations in genes associated with this pathway show oligogenic inheritance
Kong et al. discovered a membrane-tethered ubiquitination pathway that plays a role in the patterning of multiple tissues during development by dampening Hedgehog signaling strength. Defects in this pathway lead to disrupted left-right patterning (called heterotaxy) of the entire body plan, as well as organ-specific defects in the heart, limb, and skeleton. |
doi_str_mv | 10.1016/j.devcel.2020.08.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7686252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580720306705</els_id><sourcerecordid>2445971599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-1da1360b1d55ca9ac02fe6fc6fac12b1b4c697e3d0a651e41e4739689fb47ff43</originalsourceid><addsrcrecordid>eNp9UcFuFSEUJUZja_UPjJmlmxmBAYbZmDRVW5MajbZLQxi4M4-XGXgF5pn-fWlerboxuQk3l3vOgXMQek1wQzAR77aNhb2BuaGY4gbLBhP6BB0T2cmacE6elp63rOYSd0foRUpbXGBE4ufoqKW9EJJ0x-jnafUFliFqD_UV5A1EsNX14G5Wl53X2QVffdN580vfVt9hWmedIVUXYCfYhKn64SavZ-enSntbxjrm6gPsYQ67BXx-iZ6Nek7w6uE8QdefPl6dXdSXX88_n51e1oaJNtfEatIKPBDLudG9NpiOIEYjRm0IHcjAjOg7aC3WghNgpbq2F7IfB9aNI2tP0PsD724dFrCmSEc9q110i463Kmin_r3xbqOmsFedkIJyWgjePhDEcLNCympxqZg7F1_CmhRljPcd4X1fVtlh1cSQUoTxUYZgdZ-M2qpDMuo-GYWlKskU2Ju_n_gI-h3Fnz9AMWrvIKpkHHgD1kUwWdng_q9wB2sWo7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445971599</pqid></control><display><type>article</type><title>A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kong, Jennifer H. ; Young, Cullen B. ; Pusapati, Ganesh V. ; Patel, Chandni B. ; Ho, Sebastian ; Krishnan, Arunkumar ; Lin, Jiuann-Huey Ivy ; Devine, William ; Moreau de Bellaing, Anne ; Athni, Tejas S. ; Aravind, L. ; Gunn, Teresa M. ; Lo, Cecilia W. ; Rohatgi, Rajat</creator><creatorcontrib>Kong, Jennifer H. ; Young, Cullen B. ; Pusapati, Ganesh V. ; Patel, Chandni B. ; Ho, Sebastian ; Krishnan, Arunkumar ; Lin, Jiuann-Huey Ivy ; Devine, William ; Moreau de Bellaing, Anne ; Athni, Tejas S. ; Aravind, L. ; Gunn, Teresa M. ; Lo, Cecilia W. ; Rohatgi, Rajat</creatorcontrib><description>The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability.
[Display omitted]
•A cell-surface ubiquitination pathway negatively regulates Hedgehog signaling strength•This pathway promotes the ubiquitination and downregulation of Smoothened•Defects in this pathway cause limb, heart, and left-right patterning defects•Mutations in genes associated with this pathway show oligogenic inheritance
Kong et al. discovered a membrane-tethered ubiquitination pathway that plays a role in the patterning of multiple tissues during development by dampening Hedgehog signaling strength. Defects in this pathway lead to disrupted left-right patterning (called heterotaxy) of the entire body plan, as well as organ-specific defects in the heart, limb, and skeleton.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2020.08.012</identifier><identifier>PMID: 32966817</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; Animals ; congenital heart disease ; Embryo, Mammalian - metabolism ; Epistasis, Genetic ; Gene Dosage ; Heart - embryology ; heart development ; Hedgehog Proteins - metabolism ; Hedgehog signaling ; heterotaxy ; left-right patterning ; Membrane Proteins - metabolism ; Mice ; morphogen ; Mutation - genetics ; NIH 3T3 Cells ; oligogenic inheritance ; Phenotype ; primary cilia ; Protein Binding ; Signal Transduction ; Smoothened ; Smoothened Receptor - metabolism ; ubiquitin ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination</subject><ispartof>Developmental cell, 2020-11, Vol.55 (4), p.432-449.e12</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-1da1360b1d55ca9ac02fe6fc6fac12b1b4c697e3d0a651e41e4739689fb47ff43</citedby><cites>FETCH-LOGICAL-c463t-1da1360b1d55ca9ac02fe6fc6fac12b1b4c697e3d0a651e41e4739689fb47ff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.devcel.2020.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32966817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Jennifer H.</creatorcontrib><creatorcontrib>Young, Cullen B.</creatorcontrib><creatorcontrib>Pusapati, Ganesh V.</creatorcontrib><creatorcontrib>Patel, Chandni B.</creatorcontrib><creatorcontrib>Ho, Sebastian</creatorcontrib><creatorcontrib>Krishnan, Arunkumar</creatorcontrib><creatorcontrib>Lin, Jiuann-Huey Ivy</creatorcontrib><creatorcontrib>Devine, William</creatorcontrib><creatorcontrib>Moreau de Bellaing, Anne</creatorcontrib><creatorcontrib>Athni, Tejas S.</creatorcontrib><creatorcontrib>Aravind, L.</creatorcontrib><creatorcontrib>Gunn, Teresa M.</creatorcontrib><creatorcontrib>Lo, Cecilia W.</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><title>A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability.
[Display omitted]
•A cell-surface ubiquitination pathway negatively regulates Hedgehog signaling strength•This pathway promotes the ubiquitination and downregulation of Smoothened•Defects in this pathway cause limb, heart, and left-right patterning defects•Mutations in genes associated with this pathway show oligogenic inheritance
Kong et al. discovered a membrane-tethered ubiquitination pathway that plays a role in the patterning of multiple tissues during development by dampening Hedgehog signaling strength. Defects in this pathway lead to disrupted left-right patterning (called heterotaxy) of the entire body plan, as well as organ-specific defects in the heart, limb, and skeleton.</description><subject>Alleles</subject><subject>Animals</subject><subject>congenital heart disease</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Epistasis, Genetic</subject><subject>Gene Dosage</subject><subject>Heart - embryology</subject><subject>heart development</subject><subject>Hedgehog Proteins - metabolism</subject><subject>Hedgehog signaling</subject><subject>heterotaxy</subject><subject>left-right patterning</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>morphogen</subject><subject>Mutation - genetics</subject><subject>NIH 3T3 Cells</subject><subject>oligogenic inheritance</subject><subject>Phenotype</subject><subject>primary cilia</subject><subject>Protein Binding</subject><subject>Signal Transduction</subject><subject>Smoothened</subject><subject>Smoothened Receptor - metabolism</subject><subject>ubiquitin</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFuFSEUJUZja_UPjJmlmxmBAYbZmDRVW5MajbZLQxi4M4-XGXgF5pn-fWlerboxuQk3l3vOgXMQek1wQzAR77aNhb2BuaGY4gbLBhP6BB0T2cmacE6elp63rOYSd0foRUpbXGBE4ufoqKW9EJJ0x-jnafUFliFqD_UV5A1EsNX14G5Wl53X2QVffdN580vfVt9hWmedIVUXYCfYhKn64SavZ-enSntbxjrm6gPsYQ67BXx-iZ6Nek7w6uE8QdefPl6dXdSXX88_n51e1oaJNtfEatIKPBDLudG9NpiOIEYjRm0IHcjAjOg7aC3WghNgpbq2F7IfB9aNI2tP0PsD724dFrCmSEc9q110i463Kmin_r3xbqOmsFedkIJyWgjePhDEcLNCympxqZg7F1_CmhRljPcd4X1fVtlh1cSQUoTxUYZgdZ-M2qpDMuo-GYWlKskU2Ju_n_gI-h3Fnz9AMWrvIKpkHHgD1kUwWdng_q9wB2sWo7s</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Kong, Jennifer H.</creator><creator>Young, Cullen B.</creator><creator>Pusapati, Ganesh V.</creator><creator>Patel, Chandni B.</creator><creator>Ho, Sebastian</creator><creator>Krishnan, Arunkumar</creator><creator>Lin, Jiuann-Huey Ivy</creator><creator>Devine, William</creator><creator>Moreau de Bellaing, Anne</creator><creator>Athni, Tejas S.</creator><creator>Aravind, L.</creator><creator>Gunn, Teresa M.</creator><creator>Lo, Cecilia W.</creator><creator>Rohatgi, Rajat</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201123</creationdate><title>A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development</title><author>Kong, Jennifer H. ; Young, Cullen B. ; Pusapati, Ganesh V. ; Patel, Chandni B. ; Ho, Sebastian ; Krishnan, Arunkumar ; Lin, Jiuann-Huey Ivy ; Devine, William ; Moreau de Bellaing, Anne ; Athni, Tejas S. ; Aravind, L. ; Gunn, Teresa M. ; Lo, Cecilia W. ; Rohatgi, Rajat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-1da1360b1d55ca9ac02fe6fc6fac12b1b4c697e3d0a651e41e4739689fb47ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>congenital heart disease</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Epistasis, Genetic</topic><topic>Gene Dosage</topic><topic>Heart - embryology</topic><topic>heart development</topic><topic>Hedgehog Proteins - metabolism</topic><topic>Hedgehog signaling</topic><topic>heterotaxy</topic><topic>left-right patterning</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>morphogen</topic><topic>Mutation - genetics</topic><topic>NIH 3T3 Cells</topic><topic>oligogenic inheritance</topic><topic>Phenotype</topic><topic>primary cilia</topic><topic>Protein Binding</topic><topic>Signal Transduction</topic><topic>Smoothened</topic><topic>Smoothened Receptor - metabolism</topic><topic>ubiquitin</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Jennifer H.</creatorcontrib><creatorcontrib>Young, Cullen B.</creatorcontrib><creatorcontrib>Pusapati, Ganesh V.</creatorcontrib><creatorcontrib>Patel, Chandni B.</creatorcontrib><creatorcontrib>Ho, Sebastian</creatorcontrib><creatorcontrib>Krishnan, Arunkumar</creatorcontrib><creatorcontrib>Lin, Jiuann-Huey Ivy</creatorcontrib><creatorcontrib>Devine, William</creatorcontrib><creatorcontrib>Moreau de Bellaing, Anne</creatorcontrib><creatorcontrib>Athni, Tejas S.</creatorcontrib><creatorcontrib>Aravind, L.</creatorcontrib><creatorcontrib>Gunn, Teresa M.</creatorcontrib><creatorcontrib>Lo, Cecilia W.</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Jennifer H.</au><au>Young, Cullen B.</au><au>Pusapati, Ganesh V.</au><au>Patel, Chandni B.</au><au>Ho, Sebastian</au><au>Krishnan, Arunkumar</au><au>Lin, Jiuann-Huey Ivy</au><au>Devine, William</au><au>Moreau de Bellaing, Anne</au><au>Athni, Tejas S.</au><au>Aravind, L.</au><au>Gunn, Teresa M.</au><au>Lo, Cecilia W.</au><au>Rohatgi, Rajat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2020-11-23</date><risdate>2020</risdate><volume>55</volume><issue>4</issue><spage>432</spage><epage>449.e12</epage><pages>432-449.e12</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability.
[Display omitted]
•A cell-surface ubiquitination pathway negatively regulates Hedgehog signaling strength•This pathway promotes the ubiquitination and downregulation of Smoothened•Defects in this pathway cause limb, heart, and left-right patterning defects•Mutations in genes associated with this pathway show oligogenic inheritance
Kong et al. discovered a membrane-tethered ubiquitination pathway that plays a role in the patterning of multiple tissues during development by dampening Hedgehog signaling strength. Defects in this pathway lead to disrupted left-right patterning (called heterotaxy) of the entire body plan, as well as organ-specific defects in the heart, limb, and skeleton.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32966817</pmid><doi>10.1016/j.devcel.2020.08.012</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-5807 |
ispartof | Developmental cell, 2020-11, Vol.55 (4), p.432-449.e12 |
issn | 1534-5807 1878-1551 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7686252 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Alleles Animals congenital heart disease Embryo, Mammalian - metabolism Epistasis, Genetic Gene Dosage Heart - embryology heart development Hedgehog Proteins - metabolism Hedgehog signaling heterotaxy left-right patterning Membrane Proteins - metabolism Mice morphogen Mutation - genetics NIH 3T3 Cells oligogenic inheritance Phenotype primary cilia Protein Binding Signal Transduction Smoothened Smoothened Receptor - metabolism ubiquitin Ubiquitin-Protein Ligases - metabolism Ubiquitination |
title | A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Membrane-Tethered%20Ubiquitination%20Pathway%20Regulates%20Hedgehog%20Signaling%20and%20Heart%20Development&rft.jtitle=Developmental%20cell&rft.au=Kong,%20Jennifer%20H.&rft.date=2020-11-23&rft.volume=55&rft.issue=4&rft.spage=432&rft.epage=449.e12&rft.pages=432-449.e12&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2020.08.012&rft_dat=%3Cproquest_pubme%3E2445971599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445971599&rft_id=info:pmid/32966817&rft_els_id=S1534580720306705&rfr_iscdi=true |