Radiosensitization effect of poly(ADP‐ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation
Poly(ADP‐ribose) polymerase (PARP)‐1 promotes base excision repair and DNA strand break repair. Inhibitors of PARP enhance the cytotoxic effects of γ‐irradiation and X‐irradiation. We investigated the impact of PARP inhibition on the responses to γ‐irradiation (low liner energy transfer [LET] radiat...
Gespeichert in:
Veröffentlicht in: | Cancer science 2012-06, Vol.103 (6), p.1045-1050 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1050 |
---|---|
container_issue | 6 |
container_start_page | 1045 |
container_title | Cancer science |
container_volume | 103 |
creator | Hirai, Takahisa Shirai, Hidenori Fujimori, Hiroaki Okayasu, Ryuichi Sasai, Keisuke Masutani, Mitsuko |
description | Poly(ADP‐ribose) polymerase (PARP)‐1 promotes base excision repair and DNA strand break repair. Inhibitors of PARP enhance the cytotoxic effects of γ‐irradiation and X‐irradiation. We investigated the impact of PARP inhibition on the responses to γ‐irradiation (low liner energy transfer [LET] radiation) and carbon‐ion irradiation (high LET radiation) in the human pancreatic cancer cell line MIA PaCa‐2. Cell survival was assessed by colony formation assay after combination treatment with the PARP inhibitor AZD2281 and single fraction γ‐irradiation and carbon‐ion irradiation (13 and 70 keV/μm [LET 13 and LET 70]). The DNA damage response (DDR) was assessed by pulse field gel electrophoresis, western blotting and flow cytometry. Treatment with a PARP inhibitor enhanced the cytotoxic effect of γ‐irradiation and LET 13 and LET 70 carbon‐ion irradiation. Moreover, the radiosensitization effect was greater for LET 70 than for LET 13 irradiation. Prolonged and increased levels of γ‐H2AX were observed both after γ‐irradiation and carbon‐ion irradiation in the presence of the PARP inhibitor. Enhanced level of phosphorylated‐p53 (Ser‐15) was observed after γ‐irradiation but not after carbon‐ion irradiation. PARP inhibitor treatment induced S phase arrest and enhanced subsequent G2/M arrest both after γ‐irradiation and carbon‐ion irradiation. These results suggest that the induction of S phase arrest through an enhanced DDR and a local delay in DNA double strand break processing by PARP inhibition caused sensitization to γ‐irradiation and carbon‐ion irradiation. Taken together, PARP inhibitors might be applicable to a wide therapeutic range of LET radiation through their effects on the DDR. (Cancer Sci 2012; 103: 1045–1050) |
doi_str_mv | 10.1111/j.1349-7006.2012.02268.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7685087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1018344141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5648-2a147df0b233f640d2af1e3e29cc4fbf3a6779f6d9ae224cf733db515ccfb4ad3</originalsourceid><addsrcrecordid>eNqNUcmOEzEQtRAjZoFfQD4Oh2689XYAKQoMjDTSIJaz5XaXE0cdO9gdJuHEiTPfyJfg7sxEcMMHu8r13qsqPYQwJTlN5-Uqp1w0WUVImTNCWU4YK-t89widHQuPp7jKGsLZKTqPcUUIL0UjnqBTxgQRtCjO0M-PqrM-got2sN_VYL3DYAzoAXuDN77fX87efPj941ewbYK9mL7WEFQEbN3StnaiWIc19H3EsNskWIcHj3t_h5Xr8NIulri3DgKGdC32eAjKRZPykJpPPZ-iE6P6CM_u3wv05ert5_n77Ob23fV8dpPpohR1xhQVVWdIyzg3pSAdU4YCB9ZoLUxruCqrqjFl1yhIO2pTcd61BS20Nq1QHb9Arw-6m227hk6DS7P0chPsWoW99MrKfyvOLuXCf5NVWRekrpLA5b1A8F-3EAe5tnFcXTnw2ygpoTUXggqaoPUBqoOPMYA5tqFEjjbKlRzdkqNbcrRRTjbKXaI-_3vMI_HBtwR4dQDc2R72_y0s57NPY8T_ACXssV0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018344141</pqid></control><display><type>article</type><title>Radiosensitization effect of poly(ADP‐ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation</title><source>Wiley Online Library Open Access</source><creator>Hirai, Takahisa ; Shirai, Hidenori ; Fujimori, Hiroaki ; Okayasu, Ryuichi ; Sasai, Keisuke ; Masutani, Mitsuko</creator><creatorcontrib>Hirai, Takahisa ; Shirai, Hidenori ; Fujimori, Hiroaki ; Okayasu, Ryuichi ; Sasai, Keisuke ; Masutani, Mitsuko</creatorcontrib><description>Poly(ADP‐ribose) polymerase (PARP)‐1 promotes base excision repair and DNA strand break repair. Inhibitors of PARP enhance the cytotoxic effects of γ‐irradiation and X‐irradiation. We investigated the impact of PARP inhibition on the responses to γ‐irradiation (low liner energy transfer [LET] radiation) and carbon‐ion irradiation (high LET radiation) in the human pancreatic cancer cell line MIA PaCa‐2. Cell survival was assessed by colony formation assay after combination treatment with the PARP inhibitor AZD2281 and single fraction γ‐irradiation and carbon‐ion irradiation (13 and 70 keV/μm [LET 13 and LET 70]). The DNA damage response (DDR) was assessed by pulse field gel electrophoresis, western blotting and flow cytometry. Treatment with a PARP inhibitor enhanced the cytotoxic effect of γ‐irradiation and LET 13 and LET 70 carbon‐ion irradiation. Moreover, the radiosensitization effect was greater for LET 70 than for LET 13 irradiation. Prolonged and increased levels of γ‐H2AX were observed both after γ‐irradiation and carbon‐ion irradiation in the presence of the PARP inhibitor. Enhanced level of phosphorylated‐p53 (Ser‐15) was observed after γ‐irradiation but not after carbon‐ion irradiation. PARP inhibitor treatment induced S phase arrest and enhanced subsequent G2/M arrest both after γ‐irradiation and carbon‐ion irradiation. These results suggest that the induction of S phase arrest through an enhanced DDR and a local delay in DNA double strand break processing by PARP inhibition caused sensitization to γ‐irradiation and carbon‐ion irradiation. Taken together, PARP inhibitors might be applicable to a wide therapeutic range of LET radiation through their effects on the DDR. (Cancer Sci 2012; 103: 1045–1050)</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/j.1349-7006.2012.02268.x</identifier><identifier>PMID: 22404155</identifier><language>eng</language><publisher>England: John Wiley and Sons Inc</publisher><subject>Cell Line, Tumor ; Cell Survival - drug effects ; Cell Survival - radiation effects ; DNA Damage - radiation effects ; DNA Repair - radiation effects ; Enzyme Inhibitors - pharmacology ; Gamma Rays ; Histones - biosynthesis ; Humans ; Linear Energy Transfer ; Original ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - pathology ; Pancreatic Neoplasms - radiotherapy ; Phosphorylation - radiation effects ; Phthalazines - pharmacology ; Piperazines - pharmacology ; Poly(ADP-ribose) Polymerase Inhibitors ; Poly(ADP-ribose) Polymerases - metabolism ; Radiation-Sensitizing Agents ; S Phase Cell Cycle Checkpoints - radiation effects ; Tumor Suppressor Protein p53 - biosynthesis ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Cancer science, 2012-06, Vol.103 (6), p.1045-1050</ispartof><rights>2012 Japanese Cancer Association</rights><rights>2012 Japanese Cancer Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5648-2a147df0b233f640d2af1e3e29cc4fbf3a6779f6d9ae224cf733db515ccfb4ad3</citedby><cites>FETCH-LOGICAL-c5648-2a147df0b233f640d2af1e3e29cc4fbf3a6779f6d9ae224cf733db515ccfb4ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685087/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685087/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,11567,27929,27930,45579,45580,46057,46481,53796,53798</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1349-7006.2012.02268.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22404155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirai, Takahisa</creatorcontrib><creatorcontrib>Shirai, Hidenori</creatorcontrib><creatorcontrib>Fujimori, Hiroaki</creatorcontrib><creatorcontrib>Okayasu, Ryuichi</creatorcontrib><creatorcontrib>Sasai, Keisuke</creatorcontrib><creatorcontrib>Masutani, Mitsuko</creatorcontrib><title>Radiosensitization effect of poly(ADP‐ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Poly(ADP‐ribose) polymerase (PARP)‐1 promotes base excision repair and DNA strand break repair. Inhibitors of PARP enhance the cytotoxic effects of γ‐irradiation and X‐irradiation. We investigated the impact of PARP inhibition on the responses to γ‐irradiation (low liner energy transfer [LET] radiation) and carbon‐ion irradiation (high LET radiation) in the human pancreatic cancer cell line MIA PaCa‐2. Cell survival was assessed by colony formation assay after combination treatment with the PARP inhibitor AZD2281 and single fraction γ‐irradiation and carbon‐ion irradiation (13 and 70 keV/μm [LET 13 and LET 70]). The DNA damage response (DDR) was assessed by pulse field gel electrophoresis, western blotting and flow cytometry. Treatment with a PARP inhibitor enhanced the cytotoxic effect of γ‐irradiation and LET 13 and LET 70 carbon‐ion irradiation. Moreover, the radiosensitization effect was greater for LET 70 than for LET 13 irradiation. Prolonged and increased levels of γ‐H2AX were observed both after γ‐irradiation and carbon‐ion irradiation in the presence of the PARP inhibitor. Enhanced level of phosphorylated‐p53 (Ser‐15) was observed after γ‐irradiation but not after carbon‐ion irradiation. PARP inhibitor treatment induced S phase arrest and enhanced subsequent G2/M arrest both after γ‐irradiation and carbon‐ion irradiation. These results suggest that the induction of S phase arrest through an enhanced DDR and a local delay in DNA double strand break processing by PARP inhibition caused sensitization to γ‐irradiation and carbon‐ion irradiation. Taken together, PARP inhibitors might be applicable to a wide therapeutic range of LET radiation through their effects on the DDR. (Cancer Sci 2012; 103: 1045–1050)</description><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Cell Survival - radiation effects</subject><subject>DNA Damage - radiation effects</subject><subject>DNA Repair - radiation effects</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Gamma Rays</subject><subject>Histones - biosynthesis</subject><subject>Humans</subject><subject>Linear Energy Transfer</subject><subject>Original</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Pancreatic Neoplasms - radiotherapy</subject><subject>Phosphorylation - radiation effects</subject><subject>Phthalazines - pharmacology</subject><subject>Piperazines - pharmacology</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Radiation-Sensitizing Agents</subject><subject>S Phase Cell Cycle Checkpoints - radiation effects</subject><subject>Tumor Suppressor Protein p53 - biosynthesis</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcmOEzEQtRAjZoFfQD4Oh2689XYAKQoMjDTSIJaz5XaXE0cdO9gdJuHEiTPfyJfg7sxEcMMHu8r13qsqPYQwJTlN5-Uqp1w0WUVImTNCWU4YK-t89widHQuPp7jKGsLZKTqPcUUIL0UjnqBTxgQRtCjO0M-PqrM-got2sN_VYL3DYAzoAXuDN77fX87efPj941ewbYK9mL7WEFQEbN3StnaiWIc19H3EsNskWIcHj3t_h5Xr8NIulri3DgKGdC32eAjKRZPykJpPPZ-iE6P6CM_u3wv05ert5_n77Ob23fV8dpPpohR1xhQVVWdIyzg3pSAdU4YCB9ZoLUxruCqrqjFl1yhIO2pTcd61BS20Nq1QHb9Arw-6m227hk6DS7P0chPsWoW99MrKfyvOLuXCf5NVWRekrpLA5b1A8F-3EAe5tnFcXTnw2ygpoTUXggqaoPUBqoOPMYA5tqFEjjbKlRzdkqNbcrRRTjbKXaI-_3vMI_HBtwR4dQDc2R72_y0s57NPY8T_ACXssV0</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Hirai, Takahisa</creator><creator>Shirai, Hidenori</creator><creator>Fujimori, Hiroaki</creator><creator>Okayasu, Ryuichi</creator><creator>Sasai, Keisuke</creator><creator>Masutani, Mitsuko</creator><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201206</creationdate><title>Radiosensitization effect of poly(ADP‐ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation</title><author>Hirai, Takahisa ; Shirai, Hidenori ; Fujimori, Hiroaki ; Okayasu, Ryuichi ; Sasai, Keisuke ; Masutani, Mitsuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5648-2a147df0b233f640d2af1e3e29cc4fbf3a6779f6d9ae224cf733db515ccfb4ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Cell Survival - radiation effects</topic><topic>DNA Damage - radiation effects</topic><topic>DNA Repair - radiation effects</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Gamma Rays</topic><topic>Histones - biosynthesis</topic><topic>Humans</topic><topic>Linear Energy Transfer</topic><topic>Original</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Pancreatic Neoplasms - radiotherapy</topic><topic>Phosphorylation - radiation effects</topic><topic>Phthalazines - pharmacology</topic><topic>Piperazines - pharmacology</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Radiation-Sensitizing Agents</topic><topic>S Phase Cell Cycle Checkpoints - radiation effects</topic><topic>Tumor Suppressor Protein p53 - biosynthesis</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirai, Takahisa</creatorcontrib><creatorcontrib>Shirai, Hidenori</creatorcontrib><creatorcontrib>Fujimori, Hiroaki</creatorcontrib><creatorcontrib>Okayasu, Ryuichi</creatorcontrib><creatorcontrib>Sasai, Keisuke</creatorcontrib><creatorcontrib>Masutani, Mitsuko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hirai, Takahisa</au><au>Shirai, Hidenori</au><au>Fujimori, Hiroaki</au><au>Okayasu, Ryuichi</au><au>Sasai, Keisuke</au><au>Masutani, Mitsuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiosensitization effect of poly(ADP‐ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2012-06</date><risdate>2012</risdate><volume>103</volume><issue>6</issue><spage>1045</spage><epage>1050</epage><pages>1045-1050</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Poly(ADP‐ribose) polymerase (PARP)‐1 promotes base excision repair and DNA strand break repair. Inhibitors of PARP enhance the cytotoxic effects of γ‐irradiation and X‐irradiation. We investigated the impact of PARP inhibition on the responses to γ‐irradiation (low liner energy transfer [LET] radiation) and carbon‐ion irradiation (high LET radiation) in the human pancreatic cancer cell line MIA PaCa‐2. Cell survival was assessed by colony formation assay after combination treatment with the PARP inhibitor AZD2281 and single fraction γ‐irradiation and carbon‐ion irradiation (13 and 70 keV/μm [LET 13 and LET 70]). The DNA damage response (DDR) was assessed by pulse field gel electrophoresis, western blotting and flow cytometry. Treatment with a PARP inhibitor enhanced the cytotoxic effect of γ‐irradiation and LET 13 and LET 70 carbon‐ion irradiation. Moreover, the radiosensitization effect was greater for LET 70 than for LET 13 irradiation. Prolonged and increased levels of γ‐H2AX were observed both after γ‐irradiation and carbon‐ion irradiation in the presence of the PARP inhibitor. Enhanced level of phosphorylated‐p53 (Ser‐15) was observed after γ‐irradiation but not after carbon‐ion irradiation. PARP inhibitor treatment induced S phase arrest and enhanced subsequent G2/M arrest both after γ‐irradiation and carbon‐ion irradiation. These results suggest that the induction of S phase arrest through an enhanced DDR and a local delay in DNA double strand break processing by PARP inhibition caused sensitization to γ‐irradiation and carbon‐ion irradiation. Taken together, PARP inhibitors might be applicable to a wide therapeutic range of LET radiation through their effects on the DDR. (Cancer Sci 2012; 103: 1045–1050)</abstract><cop>England</cop><pub>John Wiley and Sons Inc</pub><pmid>22404155</pmid><doi>10.1111/j.1349-7006.2012.02268.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1347-9032 |
ispartof | Cancer science, 2012-06, Vol.103 (6), p.1045-1050 |
issn | 1347-9032 1349-7006 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7685087 |
source | Wiley Online Library Open Access |
subjects | Cell Line, Tumor Cell Survival - drug effects Cell Survival - radiation effects DNA Damage - radiation effects DNA Repair - radiation effects Enzyme Inhibitors - pharmacology Gamma Rays Histones - biosynthesis Humans Linear Energy Transfer Original Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology Pancreatic Neoplasms - radiotherapy Phosphorylation - radiation effects Phthalazines - pharmacology Piperazines - pharmacology Poly(ADP-ribose) Polymerase Inhibitors Poly(ADP-ribose) Polymerases - metabolism Radiation-Sensitizing Agents S Phase Cell Cycle Checkpoints - radiation effects Tumor Suppressor Protein p53 - biosynthesis Tumor Suppressor Protein p53 - metabolism |
title | Radiosensitization effect of poly(ADP‐ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiosensitization%20effect%20of%20poly(ADP%E2%80%90ribose)%20polymerase%20inhibition%20in%20cells%20exposed%20to%20low%20and%20high%20liner%20energy%20transfer%20radiation&rft.jtitle=Cancer%20science&rft.au=Hirai,%20Takahisa&rft.date=2012-06&rft.volume=103&rft.issue=6&rft.spage=1045&rft.epage=1050&rft.pages=1045-1050&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/j.1349-7006.2012.02268.x&rft_dat=%3Cproquest_24P%3E1018344141%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018344141&rft_id=info:pmid/22404155&rfr_iscdi=true |