Greigite (Fe₃S₄) is thermodynamically stable: Implications for its terrestrial and planetary occurrence
Iron sulfide minerals are widespread on Earth and likely in planetary bodies in and beyond our solar system. Using measured enthalpies of formation for three magnetic iron sulfide phases: bulk and nanophase Fe₃S₄ spinel (greigite), and its high-pressuremonoclinic phase, we show that greigite is a st...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-11, Vol.117 (46), p.28645-28648 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28648 |
---|---|
container_issue | 46 |
container_start_page | 28645 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Subramani, Tamilarasan Lilova, Kristina Abramchuk, Mykola Leinenweber, Kurt D. Navrotsky, Alexandra |
description | Iron sulfide minerals are widespread on Earth and likely in planetary bodies in and beyond our solar system. Using measured enthalpies of formation for three magnetic iron sulfide phases: bulk and nanophase Fe₃S₄ spinel (greigite), and its high-pressuremonoclinic phase, we show that greigite is a stable phase in the Fe–S phase diagram at ambient temperature. The thermodynamic stability and low surface energy of greigite supports the common occurrence of fine-grained Fe₃S₄ in many anoxic terrestrial settings. The high-pressure monoclinic phase, thermodynamically metastable below about 3 GPa, shows a calculated negative P-T slope for its formation from the spinel. The stability of these three phases suggests their potential existence on Mercury and their magnetism may contribute to its present magnetic field. |
doi_str_mv | 10.1073/pnas.2017312117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7682356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26970985</jstor_id><sourcerecordid>26970985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-3757b1d597f02c7ffc2f86cd621bbef8fe4835adf934fdca6d949fdcef7c3f043</originalsourceid><addsrcrecordid>eNpdkU1rVDEUhoModqyuXSmDburitiffyUaQYqtQcKGuQ25u0slw782YZITZVn9pf4kpU8cPCJzA-5z35ORF6DmGUwySnm1mW04JYEkxwVg-QAsMGneCaXiIFgBEdooRdoSelLIGAM0VPEZHlGKqOWULBJfZx-tY_fLkwt_e_Ph8e_PzzTKWZV35PKVhN9spOjuOu2Wpth_9U_Qo2LH4Z_f1GH29eP_l_EN39eny4_m7q84xCbWjksseD1zLAMTJEBwJSrhBENz3PqjgmaLcDkFTFgZnxaCZbhcfpKMBGD1Gb_e-m20_-SbMNdvRbHKcbN6ZZKP5V5njylyn70YKRSgXzeDV3iCVGk1xbUe3cmmevasGC62Aqwad3E_J6dvWl2qmWJwfRzv7tC2GMC4pMCV5Q1__h67TNs_tDxolmGqHykad7SmXUynZh8OLMZi7yMxdZOZPZK3j5d-LHvjfGTXgxR5Yl5ryQSdCS9CK01_GAp1M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464864837</pqid></control><display><type>article</type><title>Greigite (Fe₃S₄) is thermodynamically stable: Implications for its terrestrial and planetary occurrence</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Subramani, Tamilarasan ; Lilova, Kristina ; Abramchuk, Mykola ; Leinenweber, Kurt D. ; Navrotsky, Alexandra</creator><creatorcontrib>Subramani, Tamilarasan ; Lilova, Kristina ; Abramchuk, Mykola ; Leinenweber, Kurt D. ; Navrotsky, Alexandra</creatorcontrib><description>Iron sulfide minerals are widespread on Earth and likely in planetary bodies in and beyond our solar system. Using measured enthalpies of formation for three magnetic iron sulfide phases: bulk and nanophase Fe₃S₄ spinel (greigite), and its high-pressuremonoclinic phase, we show that greigite is a stable phase in the Fe–S phase diagram at ambient temperature. The thermodynamic stability and low surface energy of greigite supports the common occurrence of fine-grained Fe₃S₄ in many anoxic terrestrial settings. The high-pressure monoclinic phase, thermodynamically metastable below about 3 GPa, shows a calculated negative P-T slope for its formation from the spinel. The stability of these three phases suggests their potential existence on Mercury and their magnetism may contribute to its present magnetic field.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2017312117</identifier><identifier>PMID: 33139534</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ambient temperature ; Enthalpy ; Iron ; Iron sulfides ; Magnetic fields ; Magnetism ; Mercury ; Minerals ; Phase diagrams ; Physical Sciences ; Planetary magnetic fields ; S phase ; Solar system ; Spinel ; Surface energy ; Surface properties ; Surface stability ; Terrestrial environments</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-11, Vol.117 (46), p.28645-28648</ispartof><rights>Copyright National Academy of Sciences Nov 17, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-3757b1d597f02c7ffc2f86cd621bbef8fe4835adf934fdca6d949fdcef7c3f043</citedby><cites>FETCH-LOGICAL-c470t-3757b1d597f02c7ffc2f86cd621bbef8fe4835adf934fdca6d949fdcef7c3f043</cites><orcidid>0000-0001-9243-0494 ; 0000-0002-3260-0364 ; 0000000192430494 ; 0000000232600364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26970985$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26970985$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33139534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1698058$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramani, Tamilarasan</creatorcontrib><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Abramchuk, Mykola</creatorcontrib><creatorcontrib>Leinenweber, Kurt D.</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><title>Greigite (Fe₃S₄) is thermodynamically stable: Implications for its terrestrial and planetary occurrence</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Iron sulfide minerals are widespread on Earth and likely in planetary bodies in and beyond our solar system. Using measured enthalpies of formation for three magnetic iron sulfide phases: bulk and nanophase Fe₃S₄ spinel (greigite), and its high-pressuremonoclinic phase, we show that greigite is a stable phase in the Fe–S phase diagram at ambient temperature. The thermodynamic stability and low surface energy of greigite supports the common occurrence of fine-grained Fe₃S₄ in many anoxic terrestrial settings. The high-pressure monoclinic phase, thermodynamically metastable below about 3 GPa, shows a calculated negative P-T slope for its formation from the spinel. The stability of these three phases suggests their potential existence on Mercury and their magnetism may contribute to its present magnetic field.</description><subject>Ambient temperature</subject><subject>Enthalpy</subject><subject>Iron</subject><subject>Iron sulfides</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Mercury</subject><subject>Minerals</subject><subject>Phase diagrams</subject><subject>Physical Sciences</subject><subject>Planetary magnetic fields</subject><subject>S phase</subject><subject>Solar system</subject><subject>Spinel</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Surface stability</subject><subject>Terrestrial environments</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rVDEUhoModqyuXSmDburitiffyUaQYqtQcKGuQ25u0slw782YZITZVn9pf4kpU8cPCJzA-5z35ORF6DmGUwySnm1mW04JYEkxwVg-QAsMGneCaXiIFgBEdooRdoSelLIGAM0VPEZHlGKqOWULBJfZx-tY_fLkwt_e_Ph8e_PzzTKWZV35PKVhN9spOjuOu2Wpth_9U_Qo2LH4Z_f1GH29eP_l_EN39eny4_m7q84xCbWjksseD1zLAMTJEBwJSrhBENz3PqjgmaLcDkFTFgZnxaCZbhcfpKMBGD1Gb_e-m20_-SbMNdvRbHKcbN6ZZKP5V5njylyn70YKRSgXzeDV3iCVGk1xbUe3cmmevasGC62Aqwad3E_J6dvWl2qmWJwfRzv7tC2GMC4pMCV5Q1__h67TNs_tDxolmGqHykad7SmXUynZh8OLMZi7yMxdZOZPZK3j5d-LHvjfGTXgxR5Yl5ryQSdCS9CK01_GAp1M</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Subramani, Tamilarasan</creator><creator>Lilova, Kristina</creator><creator>Abramchuk, Mykola</creator><creator>Leinenweber, Kurt D.</creator><creator>Navrotsky, Alexandra</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9243-0494</orcidid><orcidid>https://orcid.org/0000-0002-3260-0364</orcidid><orcidid>https://orcid.org/0000000192430494</orcidid><orcidid>https://orcid.org/0000000232600364</orcidid></search><sort><creationdate>20201117</creationdate><title>Greigite (Fe₃S₄) is thermodynamically stable</title><author>Subramani, Tamilarasan ; Lilova, Kristina ; Abramchuk, Mykola ; Leinenweber, Kurt D. ; Navrotsky, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-3757b1d597f02c7ffc2f86cd621bbef8fe4835adf934fdca6d949fdcef7c3f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ambient temperature</topic><topic>Enthalpy</topic><topic>Iron</topic><topic>Iron sulfides</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Mercury</topic><topic>Minerals</topic><topic>Phase diagrams</topic><topic>Physical Sciences</topic><topic>Planetary magnetic fields</topic><topic>S phase</topic><topic>Solar system</topic><topic>Spinel</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Surface stability</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramani, Tamilarasan</creatorcontrib><creatorcontrib>Lilova, Kristina</creatorcontrib><creatorcontrib>Abramchuk, Mykola</creatorcontrib><creatorcontrib>Leinenweber, Kurt D.</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramani, Tamilarasan</au><au>Lilova, Kristina</au><au>Abramchuk, Mykola</au><au>Leinenweber, Kurt D.</au><au>Navrotsky, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greigite (Fe₃S₄) is thermodynamically stable: Implications for its terrestrial and planetary occurrence</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>117</volume><issue>46</issue><spage>28645</spage><epage>28648</epage><pages>28645-28648</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Iron sulfide minerals are widespread on Earth and likely in planetary bodies in and beyond our solar system. Using measured enthalpies of formation for three magnetic iron sulfide phases: bulk and nanophase Fe₃S₄ spinel (greigite), and its high-pressuremonoclinic phase, we show that greigite is a stable phase in the Fe–S phase diagram at ambient temperature. The thermodynamic stability and low surface energy of greigite supports the common occurrence of fine-grained Fe₃S₄ in many anoxic terrestrial settings. The high-pressure monoclinic phase, thermodynamically metastable below about 3 GPa, shows a calculated negative P-T slope for its formation from the spinel. The stability of these three phases suggests their potential existence on Mercury and their magnetism may contribute to its present magnetic field.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33139534</pmid><doi>10.1073/pnas.2017312117</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9243-0494</orcidid><orcidid>https://orcid.org/0000-0002-3260-0364</orcidid><orcidid>https://orcid.org/0000000192430494</orcidid><orcidid>https://orcid.org/0000000232600364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-11, Vol.117 (46), p.28645-28648 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7682356 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Ambient temperature Enthalpy Iron Iron sulfides Magnetic fields Magnetism Mercury Minerals Phase diagrams Physical Sciences Planetary magnetic fields S phase Solar system Spinel Surface energy Surface properties Surface stability Terrestrial environments |
title | Greigite (Fe₃S₄) is thermodynamically stable: Implications for its terrestrial and planetary occurrence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greigite%20(Fe%E2%82%83S%E2%82%84)%20is%20thermodynamically%20stable:%20Implications%20for%20its%20terrestrial%20and%20planetary%20occurrence&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Subramani,%20Tamilarasan&rft.date=2020-11-17&rft.volume=117&rft.issue=46&rft.spage=28645&rft.epage=28648&rft.pages=28645-28648&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2017312117&rft_dat=%3Cjstor_pubme%3E26970985%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464864837&rft_id=info:pmid/33139534&rft_jstor_id=26970985&rfr_iscdi=true |