An evolutionarily acquired microRNA shapes development of mammalian cortical projections

The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-11, Vol.117 (46), p.29113-29122
Hauptverfasser: Diaz, Jessica L., Siththanandan, Verl B., Lu, Victoria, Gonzalez-Nava, Nicole, Pasquina, Lincoln, MacDonald, Jessica L., Woodworth, Mollie B., Ozkan, Abdulkadir, Nair, Ramesh, He, Zihuai, Sahni, Vibhu, Sarnow, Peter, Palmer, Theo D., Macklis, Jeffrey D., Tharin, Suzanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29122
container_issue 46
container_start_page 29113
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Diaz, Jessica L.
Siththanandan, Verl B.
Lu, Victoria
Gonzalez-Nava, Nicole
Pasquina, Lincoln
MacDonald, Jessica L.
Woodworth, Mollie B.
Ozkan, Abdulkadir
Nair, Ramesh
He, Zihuai
Sahni, Vibhu
Sarnow, Peter
Palmer, Theo D.
Macklis, Jeffrey D.
Tharin, Suzanne
description The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.
doi_str_mv 10.1073/pnas.2006700117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7682328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26971036</jstor_id><sourcerecordid>26971036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-f54ee2a25440ffca4b16c5c1947da1b603bf60f58c8c01de97276db393f298eb3</originalsourceid><addsrcrecordid>eNpdkUuLFDEUhYMoTju6dqUUzMZNzdy8k43QDL5gUBAFdyGVSpw0VZWapKph_r1pemwfq7s43z2cew9CLzFcYpD0ap5suSQAQgJgLB-hDQaNW8E0PEYbACJbxQg7Q89K2QGA5gqeojNKMdVcsg36sZ0av0_DusQ02RyH-8a6uzVm3zdjdDl9_bxtyq2dfWl6v_dDmkc_LU0KzWjH0Q7RTo1LeYnODs2c0867g1V5jp4EOxT_4mGeo-_v3327_tjefPnw6Xp70zrG6NIGzrwnlnDGIARnWYeF4w5rJnuLOwG0CwICV045wL3XkkjRd1TTQLTyHT1Hb4--89qNvnc1XLaDmXMcbb43yUbzrzLFW_Mz7Y0UilCiqsGbB4Oc7lZfFjPG4vww2MmntRjCuKTAuOIVvfgP3aU1T_W8SgmmBGNcV-rqSNXvlZJ9OIXBYA6tmUNr5k9rdeP13zec-N81VeDVEdiVJeWTToSWGKigvwCHhJ8h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464864459</pqid></control><display><type>article</type><title>An evolutionarily acquired microRNA shapes development of mammalian cortical projections</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Diaz, Jessica L. ; Siththanandan, Verl B. ; Lu, Victoria ; Gonzalez-Nava, Nicole ; Pasquina, Lincoln ; MacDonald, Jessica L. ; Woodworth, Mollie B. ; Ozkan, Abdulkadir ; Nair, Ramesh ; He, Zihuai ; Sahni, Vibhu ; Sarnow, Peter ; Palmer, Theo D. ; Macklis, Jeffrey D. ; Tharin, Suzanne</creator><creatorcontrib>Diaz, Jessica L. ; Siththanandan, Verl B. ; Lu, Victoria ; Gonzalez-Nava, Nicole ; Pasquina, Lincoln ; MacDonald, Jessica L. ; Woodworth, Mollie B. ; Ozkan, Abdulkadir ; Nair, Ramesh ; He, Zihuai ; Sahni, Vibhu ; Sarnow, Peter ; Palmer, Theo D. ; Macklis, Jeffrey D. ; Tharin, Suzanne</creatorcontrib><description>The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2006700117</identifier><identifier>PMID: 33139574</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Evolution ; Biological Sciences ; Cerebral Cortex - physiology ; Cognition &amp; reasoning ; Cognitive ability ; Corpus callosum ; Corpus Callosum - physiology ; Eutheria - genetics ; Evolution ; Gene Expression Regulation, Developmental ; Mammals ; Mammals - genetics ; Mice ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - physiology ; miRNA ; Motor Cortex - pathology ; Motor Neurons ; Motor skill ; Neurons ; Projection ; Pyramidal tracts ; Pyramidal Tracts - pathology ; Regulators ; Ribonucleic acid ; RNA ; Transcription ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-11, Vol.117 (46), p.29113-29122</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Nov 17, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-f54ee2a25440ffca4b16c5c1947da1b603bf60f58c8c01de97276db393f298eb3</citedby><cites>FETCH-LOGICAL-c443t-f54ee2a25440ffca4b16c5c1947da1b603bf60f58c8c01de97276db393f298eb3</cites><orcidid>0000-0001-8005-4348 ; 0000-0002-9111-5756 ; 0000-0002-1323-3247 ; 0000-0003-2130-2289 ; 0000-0002-8040-1191 ; 0000-0003-2499-7637 ; 0000-0001-8584-6766 ; 0000-0002-2043-2770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26971036$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26971036$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33139574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diaz, Jessica L.</creatorcontrib><creatorcontrib>Siththanandan, Verl B.</creatorcontrib><creatorcontrib>Lu, Victoria</creatorcontrib><creatorcontrib>Gonzalez-Nava, Nicole</creatorcontrib><creatorcontrib>Pasquina, Lincoln</creatorcontrib><creatorcontrib>MacDonald, Jessica L.</creatorcontrib><creatorcontrib>Woodworth, Mollie B.</creatorcontrib><creatorcontrib>Ozkan, Abdulkadir</creatorcontrib><creatorcontrib>Nair, Ramesh</creatorcontrib><creatorcontrib>He, Zihuai</creatorcontrib><creatorcontrib>Sahni, Vibhu</creatorcontrib><creatorcontrib>Sarnow, Peter</creatorcontrib><creatorcontrib>Palmer, Theo D.</creatorcontrib><creatorcontrib>Macklis, Jeffrey D.</creatorcontrib><creatorcontrib>Tharin, Suzanne</creatorcontrib><title>An evolutionarily acquired microRNA shapes development of mammalian cortical projections</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.</description><subject>Animals</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Cerebral Cortex - physiology</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive ability</subject><subject>Corpus callosum</subject><subject>Corpus Callosum - physiology</subject><subject>Eutheria - genetics</subject><subject>Evolution</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Mammals</subject><subject>Mammals - genetics</subject><subject>Mice</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - physiology</subject><subject>miRNA</subject><subject>Motor Cortex - pathology</subject><subject>Motor Neurons</subject><subject>Motor skill</subject><subject>Neurons</subject><subject>Projection</subject><subject>Pyramidal tracts</subject><subject>Pyramidal Tracts - pathology</subject><subject>Regulators</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Transcription</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUuLFDEUhYMoTju6dqUUzMZNzdy8k43QDL5gUBAFdyGVSpw0VZWapKph_r1pemwfq7s43z2cew9CLzFcYpD0ap5suSQAQgJgLB-hDQaNW8E0PEYbACJbxQg7Q89K2QGA5gqeojNKMdVcsg36sZ0av0_DusQ02RyH-8a6uzVm3zdjdDl9_bxtyq2dfWl6v_dDmkc_LU0KzWjH0Q7RTo1LeYnODs2c0867g1V5jp4EOxT_4mGeo-_v3327_tjefPnw6Xp70zrG6NIGzrwnlnDGIARnWYeF4w5rJnuLOwG0CwICV045wL3XkkjRd1TTQLTyHT1Hb4--89qNvnc1XLaDmXMcbb43yUbzrzLFW_Mz7Y0UilCiqsGbB4Oc7lZfFjPG4vww2MmntRjCuKTAuOIVvfgP3aU1T_W8SgmmBGNcV-rqSNXvlZJ9OIXBYA6tmUNr5k9rdeP13zec-N81VeDVEdiVJeWTToSWGKigvwCHhJ8h</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Diaz, Jessica L.</creator><creator>Siththanandan, Verl B.</creator><creator>Lu, Victoria</creator><creator>Gonzalez-Nava, Nicole</creator><creator>Pasquina, Lincoln</creator><creator>MacDonald, Jessica L.</creator><creator>Woodworth, Mollie B.</creator><creator>Ozkan, Abdulkadir</creator><creator>Nair, Ramesh</creator><creator>He, Zihuai</creator><creator>Sahni, Vibhu</creator><creator>Sarnow, Peter</creator><creator>Palmer, Theo D.</creator><creator>Macklis, Jeffrey D.</creator><creator>Tharin, Suzanne</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8005-4348</orcidid><orcidid>https://orcid.org/0000-0002-9111-5756</orcidid><orcidid>https://orcid.org/0000-0002-1323-3247</orcidid><orcidid>https://orcid.org/0000-0003-2130-2289</orcidid><orcidid>https://orcid.org/0000-0002-8040-1191</orcidid><orcidid>https://orcid.org/0000-0003-2499-7637</orcidid><orcidid>https://orcid.org/0000-0001-8584-6766</orcidid><orcidid>https://orcid.org/0000-0002-2043-2770</orcidid></search><sort><creationdate>20201117</creationdate><title>An evolutionarily acquired microRNA shapes development of mammalian cortical projections</title><author>Diaz, Jessica L. ; Siththanandan, Verl B. ; Lu, Victoria ; Gonzalez-Nava, Nicole ; Pasquina, Lincoln ; MacDonald, Jessica L. ; Woodworth, Mollie B. ; Ozkan, Abdulkadir ; Nair, Ramesh ; He, Zihuai ; Sahni, Vibhu ; Sarnow, Peter ; Palmer, Theo D. ; Macklis, Jeffrey D. ; Tharin, Suzanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-f54ee2a25440ffca4b16c5c1947da1b603bf60f58c8c01de97276db393f298eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Cerebral Cortex - physiology</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive ability</topic><topic>Corpus callosum</topic><topic>Corpus Callosum - physiology</topic><topic>Eutheria - genetics</topic><topic>Evolution</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Mammals</topic><topic>Mammals - genetics</topic><topic>Mice</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - physiology</topic><topic>miRNA</topic><topic>Motor Cortex - pathology</topic><topic>Motor Neurons</topic><topic>Motor skill</topic><topic>Neurons</topic><topic>Projection</topic><topic>Pyramidal tracts</topic><topic>Pyramidal Tracts - pathology</topic><topic>Regulators</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Transcription</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz, Jessica L.</creatorcontrib><creatorcontrib>Siththanandan, Verl B.</creatorcontrib><creatorcontrib>Lu, Victoria</creatorcontrib><creatorcontrib>Gonzalez-Nava, Nicole</creatorcontrib><creatorcontrib>Pasquina, Lincoln</creatorcontrib><creatorcontrib>MacDonald, Jessica L.</creatorcontrib><creatorcontrib>Woodworth, Mollie B.</creatorcontrib><creatorcontrib>Ozkan, Abdulkadir</creatorcontrib><creatorcontrib>Nair, Ramesh</creatorcontrib><creatorcontrib>He, Zihuai</creatorcontrib><creatorcontrib>Sahni, Vibhu</creatorcontrib><creatorcontrib>Sarnow, Peter</creatorcontrib><creatorcontrib>Palmer, Theo D.</creatorcontrib><creatorcontrib>Macklis, Jeffrey D.</creatorcontrib><creatorcontrib>Tharin, Suzanne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaz, Jessica L.</au><au>Siththanandan, Verl B.</au><au>Lu, Victoria</au><au>Gonzalez-Nava, Nicole</au><au>Pasquina, Lincoln</au><au>MacDonald, Jessica L.</au><au>Woodworth, Mollie B.</au><au>Ozkan, Abdulkadir</au><au>Nair, Ramesh</au><au>He, Zihuai</au><au>Sahni, Vibhu</au><au>Sarnow, Peter</au><au>Palmer, Theo D.</au><au>Macklis, Jeffrey D.</au><au>Tharin, Suzanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evolutionarily acquired microRNA shapes development of mammalian cortical projections</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>117</volume><issue>46</issue><spage>29113</spage><epage>29122</epage><pages>29113-29122</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33139574</pmid><doi>10.1073/pnas.2006700117</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8005-4348</orcidid><orcidid>https://orcid.org/0000-0002-9111-5756</orcidid><orcidid>https://orcid.org/0000-0002-1323-3247</orcidid><orcidid>https://orcid.org/0000-0003-2130-2289</orcidid><orcidid>https://orcid.org/0000-0002-8040-1191</orcidid><orcidid>https://orcid.org/0000-0003-2499-7637</orcidid><orcidid>https://orcid.org/0000-0001-8584-6766</orcidid><orcidid>https://orcid.org/0000-0002-2043-2770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-11, Vol.117 (46), p.29113-29122
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7682328
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Evolution
Biological Sciences
Cerebral Cortex - physiology
Cognition & reasoning
Cognitive ability
Corpus callosum
Corpus Callosum - physiology
Eutheria - genetics
Evolution
Gene Expression Regulation, Developmental
Mammals
Mammals - genetics
Mice
MicroRNAs
MicroRNAs - genetics
MicroRNAs - physiology
miRNA
Motor Cortex - pathology
Motor Neurons
Motor skill
Neurons
Projection
Pyramidal tracts
Pyramidal Tracts - pathology
Regulators
Ribonucleic acid
RNA
Transcription
Vertebrates
title An evolutionarily acquired microRNA shapes development of mammalian cortical projections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evolutionarily%20acquired%20microRNA%20shapes%20development%20of%20mammalian%20cortical%20projections&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Diaz,%20Jessica%20L.&rft.date=2020-11-17&rft.volume=117&rft.issue=46&rft.spage=29113&rft.epage=29122&rft.pages=29113-29122&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2006700117&rft_dat=%3Cjstor_pubme%3E26971036%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464864459&rft_id=info:pmid/33139574&rft_jstor_id=26971036&rfr_iscdi=true