Age‐induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge

Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2020-11, Vol.19 (11), p.e13166-n/a
Hauptverfasser: Moore, Timothy M., Zhou, Zhenqi, Strumwasser, Alexander R., Cohn, Whitaker, Lin, Amanda J., Cory, Kevin, Whitney, Kate, Ho, Theodore, Ho, Timothy, Lee, Joseph L., Rucker, Daniel H., Hoang, Austin N., Widjaja, Kevin, Abrishami, Aaron D., Charugundla, Sarada, Stiles, Linsey, Whitelegge, Julian P., Turcotte, Lorraine P., Wanagat, Jonathan, Hevener, Andrea L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e13166
container_title Aging cell
container_volume 19
creator Moore, Timothy M.
Zhou, Zhenqi
Strumwasser, Alexander R.
Cohn, Whitaker
Lin, Amanda J.
Cory, Kevin
Whitney, Kate
Ho, Theodore
Ho, Timothy
Lee, Joseph L.
Rucker, Daniel H.
Hoang, Austin N.
Widjaja, Kevin
Abrishami, Aaron D.
Charugundla, Sarada
Stiles, Linsey
Whitelegge, Julian P.
Turcotte, Lorraine P.
Wanagat, Jonathan
Hevener, Andrea L.
description Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A “mutator” mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut) because it accumulates mtDNA point mutations ~ 500‐fold > wild‐type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24‐hr starvation, and following high‐fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12‐month‐old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress‐related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice. Mice harboring supraphysiological mtDNA point mutations (PolG+/mut) respond similarly to WT animals during metabolic challenge including nutrient excess, starvation, and acute exercise.
doi_str_mv 10.1111/acel.13166
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7681042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707827538</galeid><sourcerecordid>A707827538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5436-7e8a1f97dda73a028212863b961ee4f409bd45ac4fca7a7751fdde3b87cd23403</originalsourceid><addsrcrecordid>eNqFks1uEzEQx1cIREvhwgMgS1wQUoK_dr17QYpC-ZAquMDZmtiziatdO7W9RT3BI_CMPAlOUwJFCOyDLfs3_xmP_1X1mNE5K-MFGBzmTLCmuVMdM6nkrFO8uXvYs_aoepDSOaVMdVTcr46EoLKjnTyuvizW-P3rN-ftZNCS0eVgNsHb6GAgr94vyDY4n8k4Zcgu-EQgInEeLF5MkJHkQGDIGMmIGVZhcIZswoghZUguFZJETNsSeI36KUeHRc9sYBjQr_Fhda-HIeGjm_Wk-vT69OPy7ezsw5t3y8XZzNRSNDOFLbC-U9aCEkB5yxlvG7HqGoYoe0m7lZU1GNkbUKBUzXprUaxaZSwXkoqT6uVedzutRrSmFBFh0NvoRohXOoDTt2-82-h1uNSqaRmVvAg8uxGI4WLClPXoUmn8AB7DlDSXNSt_IDpR0Kd_oOdhir48r1ANb2uhBP8vJVvO5S9qDQNq5_tQqjO71HqhqGq5qkVbqPlfqDItjs4Ej70r57cCnu8DTAwpRewPnWBU70yld6bS16Yq8JPfe3dAf7qoAGwPfC5prv4hpRfL07O96A_e-diq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462848224</pqid></control><display><type>article</type><title>Age‐induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Moore, Timothy M. ; Zhou, Zhenqi ; Strumwasser, Alexander R. ; Cohn, Whitaker ; Lin, Amanda J. ; Cory, Kevin ; Whitney, Kate ; Ho, Theodore ; Ho, Timothy ; Lee, Joseph L. ; Rucker, Daniel H. ; Hoang, Austin N. ; Widjaja, Kevin ; Abrishami, Aaron D. ; Charugundla, Sarada ; Stiles, Linsey ; Whitelegge, Julian P. ; Turcotte, Lorraine P. ; Wanagat, Jonathan ; Hevener, Andrea L.</creator><creatorcontrib>Moore, Timothy M. ; Zhou, Zhenqi ; Strumwasser, Alexander R. ; Cohn, Whitaker ; Lin, Amanda J. ; Cory, Kevin ; Whitney, Kate ; Ho, Theodore ; Ho, Timothy ; Lee, Joseph L. ; Rucker, Daniel H. ; Hoang, Austin N. ; Widjaja, Kevin ; Abrishami, Aaron D. ; Charugundla, Sarada ; Stiles, Linsey ; Whitelegge, Julian P. ; Turcotte, Lorraine P. ; Wanagat, Jonathan ; Hevener, Andrea L.</creatorcontrib><description>Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A “mutator” mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut) because it accumulates mtDNA point mutations ~ 500‐fold &gt; wild‐type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24‐hr starvation, and following high‐fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12‐month‐old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress‐related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice. Mice harboring supraphysiological mtDNA point mutations (PolG+/mut) respond similarly to WT animals during metabolic challenge including nutrient excess, starvation, and acute exercise.</description><identifier>ISSN: 1474-9718</identifier><identifier>ISSN: 1474-9726</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.13166</identifier><identifier>PMID: 33049094</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Adipose tissue ; Aging ; Animals ; Deoxyribonucleic acid ; Diet, High-Fat ; Disease Models, Animal ; DNA ; DNA, Mitochondrial - genetics ; Electron transport chain ; Gene mutations ; Genetic aspects ; Genomes ; High fat diet ; Homeostasis ; Insulin ; Insulin resistance ; Kinases ; Metabolism ; Mice ; mitochondria ; Mitochondria, Liver - genetics ; Mitochondria, Liver - metabolism ; Mitochondria, Muscle - genetics ; Mitochondria, Muscle - metabolism ; Mitochondrial DNA ; Mutation ; Nutrients ; obesity ; Original ; Oxidative stress ; Oxygen consumption ; Phenotypes ; Phenotyping ; Point Mutation ; POLG ; Progeria ; Protein transport ; Protein turnover ; Proteins ; Ribosomal proteins ; Rodents ; Starvation ; Starvation - genetics ; Starvation - metabolism</subject><ispartof>Aging cell, 2020-11, Vol.19 (11), p.e13166-n/a</ispartof><rights>2020 The Authors. published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5436-7e8a1f97dda73a028212863b961ee4f409bd45ac4fca7a7751fdde3b87cd23403</citedby><cites>FETCH-LOGICAL-c5436-7e8a1f97dda73a028212863b961ee4f409bd45ac4fca7a7751fdde3b87cd23403</cites><orcidid>0000-0002-8460-8616 ; 0000-0003-1508-4377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681042/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681042/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33049094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, Timothy M.</creatorcontrib><creatorcontrib>Zhou, Zhenqi</creatorcontrib><creatorcontrib>Strumwasser, Alexander R.</creatorcontrib><creatorcontrib>Cohn, Whitaker</creatorcontrib><creatorcontrib>Lin, Amanda J.</creatorcontrib><creatorcontrib>Cory, Kevin</creatorcontrib><creatorcontrib>Whitney, Kate</creatorcontrib><creatorcontrib>Ho, Theodore</creatorcontrib><creatorcontrib>Ho, Timothy</creatorcontrib><creatorcontrib>Lee, Joseph L.</creatorcontrib><creatorcontrib>Rucker, Daniel H.</creatorcontrib><creatorcontrib>Hoang, Austin N.</creatorcontrib><creatorcontrib>Widjaja, Kevin</creatorcontrib><creatorcontrib>Abrishami, Aaron D.</creatorcontrib><creatorcontrib>Charugundla, Sarada</creatorcontrib><creatorcontrib>Stiles, Linsey</creatorcontrib><creatorcontrib>Whitelegge, Julian P.</creatorcontrib><creatorcontrib>Turcotte, Lorraine P.</creatorcontrib><creatorcontrib>Wanagat, Jonathan</creatorcontrib><creatorcontrib>Hevener, Andrea L.</creatorcontrib><title>Age‐induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A “mutator” mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut) because it accumulates mtDNA point mutations ~ 500‐fold &gt; wild‐type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24‐hr starvation, and following high‐fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12‐month‐old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress‐related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice. Mice harboring supraphysiological mtDNA point mutations (PolG+/mut) respond similarly to WT animals during metabolic challenge including nutrient excess, starvation, and acute exercise.</description><subject>Adipose tissue</subject><subject>Aging</subject><subject>Animals</subject><subject>Deoxyribonucleic acid</subject><subject>Diet, High-Fat</subject><subject>Disease Models, Animal</subject><subject>DNA</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Electron transport chain</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>Metabolism</subject><subject>Mice</subject><subject>mitochondria</subject><subject>Mitochondria, Liver - genetics</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondria, Muscle - genetics</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mutation</subject><subject>Nutrients</subject><subject>obesity</subject><subject>Original</subject><subject>Oxidative stress</subject><subject>Oxygen consumption</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Point Mutation</subject><subject>POLG</subject><subject>Progeria</subject><subject>Protein transport</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Ribosomal proteins</subject><subject>Rodents</subject><subject>Starvation</subject><subject>Starvation - genetics</subject><subject>Starvation - metabolism</subject><issn>1474-9718</issn><issn>1474-9726</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks1uEzEQx1cIREvhwgMgS1wQUoK_dr17QYpC-ZAquMDZmtiziatdO7W9RT3BI_CMPAlOUwJFCOyDLfs3_xmP_1X1mNE5K-MFGBzmTLCmuVMdM6nkrFO8uXvYs_aoepDSOaVMdVTcr46EoLKjnTyuvizW-P3rN-ftZNCS0eVgNsHb6GAgr94vyDY4n8k4Zcgu-EQgInEeLF5MkJHkQGDIGMmIGVZhcIZswoghZUguFZJETNsSeI36KUeHRc9sYBjQr_Fhda-HIeGjm_Wk-vT69OPy7ezsw5t3y8XZzNRSNDOFLbC-U9aCEkB5yxlvG7HqGoYoe0m7lZU1GNkbUKBUzXprUaxaZSwXkoqT6uVedzutRrSmFBFh0NvoRohXOoDTt2-82-h1uNSqaRmVvAg8uxGI4WLClPXoUmn8AB7DlDSXNSt_IDpR0Kd_oOdhir48r1ANb2uhBP8vJVvO5S9qDQNq5_tQqjO71HqhqGq5qkVbqPlfqDItjs4Ej70r57cCnu8DTAwpRewPnWBU70yld6bS16Yq8JPfe3dAf7qoAGwPfC5prv4hpRfL07O96A_e-diq</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Moore, Timothy M.</creator><creator>Zhou, Zhenqi</creator><creator>Strumwasser, Alexander R.</creator><creator>Cohn, Whitaker</creator><creator>Lin, Amanda J.</creator><creator>Cory, Kevin</creator><creator>Whitney, Kate</creator><creator>Ho, Theodore</creator><creator>Ho, Timothy</creator><creator>Lee, Joseph L.</creator><creator>Rucker, Daniel H.</creator><creator>Hoang, Austin N.</creator><creator>Widjaja, Kevin</creator><creator>Abrishami, Aaron D.</creator><creator>Charugundla, Sarada</creator><creator>Stiles, Linsey</creator><creator>Whitelegge, Julian P.</creator><creator>Turcotte, Lorraine P.</creator><creator>Wanagat, Jonathan</creator><creator>Hevener, Andrea L.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8460-8616</orcidid><orcidid>https://orcid.org/0000-0003-1508-4377</orcidid></search><sort><creationdate>202011</creationdate><title>Age‐induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge</title><author>Moore, Timothy M. ; Zhou, Zhenqi ; Strumwasser, Alexander R. ; Cohn, Whitaker ; Lin, Amanda J. ; Cory, Kevin ; Whitney, Kate ; Ho, Theodore ; Ho, Timothy ; Lee, Joseph L. ; Rucker, Daniel H. ; Hoang, Austin N. ; Widjaja, Kevin ; Abrishami, Aaron D. ; Charugundla, Sarada ; Stiles, Linsey ; Whitelegge, Julian P. ; Turcotte, Lorraine P. ; Wanagat, Jonathan ; Hevener, Andrea L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5436-7e8a1f97dda73a028212863b961ee4f409bd45ac4fca7a7751fdde3b87cd23403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adipose tissue</topic><topic>Aging</topic><topic>Animals</topic><topic>Deoxyribonucleic acid</topic><topic>Diet, High-Fat</topic><topic>Disease Models, Animal</topic><topic>DNA</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Electron transport chain</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>Metabolism</topic><topic>Mice</topic><topic>mitochondria</topic><topic>Mitochondria, Liver - genetics</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondria, Muscle - genetics</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mutation</topic><topic>Nutrients</topic><topic>obesity</topic><topic>Original</topic><topic>Oxidative stress</topic><topic>Oxygen consumption</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Point Mutation</topic><topic>POLG</topic><topic>Progeria</topic><topic>Protein transport</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Ribosomal proteins</topic><topic>Rodents</topic><topic>Starvation</topic><topic>Starvation - genetics</topic><topic>Starvation - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Timothy M.</creatorcontrib><creatorcontrib>Zhou, Zhenqi</creatorcontrib><creatorcontrib>Strumwasser, Alexander R.</creatorcontrib><creatorcontrib>Cohn, Whitaker</creatorcontrib><creatorcontrib>Lin, Amanda J.</creatorcontrib><creatorcontrib>Cory, Kevin</creatorcontrib><creatorcontrib>Whitney, Kate</creatorcontrib><creatorcontrib>Ho, Theodore</creatorcontrib><creatorcontrib>Ho, Timothy</creatorcontrib><creatorcontrib>Lee, Joseph L.</creatorcontrib><creatorcontrib>Rucker, Daniel H.</creatorcontrib><creatorcontrib>Hoang, Austin N.</creatorcontrib><creatorcontrib>Widjaja, Kevin</creatorcontrib><creatorcontrib>Abrishami, Aaron D.</creatorcontrib><creatorcontrib>Charugundla, Sarada</creatorcontrib><creatorcontrib>Stiles, Linsey</creatorcontrib><creatorcontrib>Whitelegge, Julian P.</creatorcontrib><creatorcontrib>Turcotte, Lorraine P.</creatorcontrib><creatorcontrib>Wanagat, Jonathan</creatorcontrib><creatorcontrib>Hevener, Andrea L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Timothy M.</au><au>Zhou, Zhenqi</au><au>Strumwasser, Alexander R.</au><au>Cohn, Whitaker</au><au>Lin, Amanda J.</au><au>Cory, Kevin</au><au>Whitney, Kate</au><au>Ho, Theodore</au><au>Ho, Timothy</au><au>Lee, Joseph L.</au><au>Rucker, Daniel H.</au><au>Hoang, Austin N.</au><au>Widjaja, Kevin</au><au>Abrishami, Aaron D.</au><au>Charugundla, Sarada</au><au>Stiles, Linsey</au><au>Whitelegge, Julian P.</au><au>Turcotte, Lorraine P.</au><au>Wanagat, Jonathan</au><au>Hevener, Andrea L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age‐induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2020-11</date><risdate>2020</risdate><volume>19</volume><issue>11</issue><spage>e13166</spage><epage>n/a</epage><pages>e13166-n/a</pages><issn>1474-9718</issn><issn>1474-9726</issn><eissn>1474-9726</eissn><abstract>Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A “mutator” mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut) because it accumulates mtDNA point mutations ~ 500‐fold &gt; wild‐type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24‐hr starvation, and following high‐fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12‐month‐old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress‐related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice. Mice harboring supraphysiological mtDNA point mutations (PolG+/mut) respond similarly to WT animals during metabolic challenge including nutrient excess, starvation, and acute exercise.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33049094</pmid><doi>10.1111/acel.13166</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8460-8616</orcidid><orcidid>https://orcid.org/0000-0003-1508-4377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2020-11, Vol.19 (11), p.e13166-n/a
issn 1474-9718
1474-9726
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7681042
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adipose tissue
Aging
Animals
Deoxyribonucleic acid
Diet, High-Fat
Disease Models, Animal
DNA
DNA, Mitochondrial - genetics
Electron transport chain
Gene mutations
Genetic aspects
Genomes
High fat diet
Homeostasis
Insulin
Insulin resistance
Kinases
Metabolism
Mice
mitochondria
Mitochondria, Liver - genetics
Mitochondria, Liver - metabolism
Mitochondria, Muscle - genetics
Mitochondria, Muscle - metabolism
Mitochondrial DNA
Mutation
Nutrients
obesity
Original
Oxidative stress
Oxygen consumption
Phenotypes
Phenotyping
Point Mutation
POLG
Progeria
Protein transport
Protein turnover
Proteins
Ribosomal proteins
Rodents
Starvation
Starvation - genetics
Starvation - metabolism
title Age‐induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age%E2%80%90induced%20mitochondrial%20DNA%20point%20mutations%20are%20inadequate%20to%20alter%20metabolic%20homeostasis%20in%20response%20to%20nutrient%20challenge&rft.jtitle=Aging%20cell&rft.au=Moore,%20Timothy%20M.&rft.date=2020-11&rft.volume=19&rft.issue=11&rft.spage=e13166&rft.epage=n/a&rft.pages=e13166-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.13166&rft_dat=%3Cgale_pubme%3EA707827538%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462848224&rft_id=info:pmid/33049094&rft_galeid=A707827538&rfr_iscdi=true