The evolving landscape of predictive biomarkers in immuno‐oncology with a focus on spatial technologies
Immunotherapies have shown long‐lasting and unparalleled responses for cancer patients compared to conventional therapy. However, they seem to only be effective in a subset of patients. Therefore, it has become evident that a greater understanding of the tumor microenvironment (TME) is required to u...
Gespeichert in:
Veröffentlicht in: | Clinical & translational immunology 2020, Vol.9 (11), p.e1215-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | e1215 |
container_title | Clinical & translational immunology |
container_volume | 9 |
creator | Sadeghi Rad, Habib Bazaz, Sajad Razavi Monkman, James Ebrahimi Warkiani, Majid Rezaei, Nima O'Byrne, Ken Kulasinghe, Arutha |
description | Immunotherapies have shown long‐lasting and unparalleled responses for cancer patients compared to conventional therapy. However, they seem to only be effective in a subset of patients. Therefore, it has become evident that a greater understanding of the tumor microenvironment (TME) is required to understand the nuances which may be at play for a favorable outcome to therapy. The immune contexture of the TME is an important factor in dictating how well a tumor may respond to immune checkpoint inhibitors. While traditional immunohistochemistry techniques allow for the profiling of cells in the tumor, this is often lost when tumors are analysed using bulk tissue genomic approaches. Moreover, the actual cellular proportions, cellular heterogeneity and deeper spatial distribution are lacking in characterisation. Advances in tissue interrogation technologies have given rise to spatially resolved characterisation of the TME. This review aims to provide an overview of the current methodologies that are used to profile the TME, which may provide insights into the immunopathology associated with a favorable outcome to immunotherapy.
In this review, we discuss spatial analysis tools that can be used to characterise the tumor microenvironment. We present a number of technologies that are transforming the field and providing insights into the immunopathology associated with a favorable outcome to immunotherapy. |
doi_str_mv | 10.1002/cti2.1215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7680923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464539682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4205-89ad61c42bf45458e4c230f94f576cf1cd5d479b351d233eddd53d011e050a413</originalsourceid><addsrcrecordid>eNp1kc9uEzEQxi0EolXogTewxAUOacf_NrsXJBSVUqkSl3C2HHs2cdm1F3s3VW48As_Ik9RLKgRInGak-c2n-eYj5DWDSwbAr-zo-SXjTD0j5xwULAGq-vkf_Rm5yPkeAJiQoFj1kpwJwRUDBufEb_ZI8RC7gw872pngsjUD0tjSIaHzRf2AdOtjb9JXTJn6QH3fTyH-_P4jBhu7uDvSBz_uqaFttFOmMdA8mNGbjo5o92FGPOZX5EVruowXT3VBvny83qw_Le8-39yuP9wtrSwnL-vGuIqVfttKJVWN0nIBbSNbtapsy6xTTq6arVDMcSHQOaeEA8aw-DWSiQV5f9Idpm2PzmIYk-n0kHyxcNTReP33JPi93sWDXlU1NEVyQd4-CaT4bcI86t5ni115DsYpay4rtVKVUHVB3_yD3scphWJvpqQSTVXzQr07UTbFnBO2v49hoOcM9ZyhnjMs7NWJffAdHv8P6vXmlv_aeATWHJ4m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464539682</pqid></control><display><type>article</type><title>The evolving landscape of predictive biomarkers in immuno‐oncology with a focus on spatial technologies</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sadeghi Rad, Habib ; Bazaz, Sajad Razavi ; Monkman, James ; Ebrahimi Warkiani, Majid ; Rezaei, Nima ; O'Byrne, Ken ; Kulasinghe, Arutha</creator><creatorcontrib>Sadeghi Rad, Habib ; Bazaz, Sajad Razavi ; Monkman, James ; Ebrahimi Warkiani, Majid ; Rezaei, Nima ; O'Byrne, Ken ; Kulasinghe, Arutha</creatorcontrib><description>Immunotherapies have shown long‐lasting and unparalleled responses for cancer patients compared to conventional therapy. However, they seem to only be effective in a subset of patients. Therefore, it has become evident that a greater understanding of the tumor microenvironment (TME) is required to understand the nuances which may be at play for a favorable outcome to therapy. The immune contexture of the TME is an important factor in dictating how well a tumor may respond to immune checkpoint inhibitors. While traditional immunohistochemistry techniques allow for the profiling of cells in the tumor, this is often lost when tumors are analysed using bulk tissue genomic approaches. Moreover, the actual cellular proportions, cellular heterogeneity and deeper spatial distribution are lacking in characterisation. Advances in tissue interrogation technologies have given rise to spatially resolved characterisation of the TME. This review aims to provide an overview of the current methodologies that are used to profile the TME, which may provide insights into the immunopathology associated with a favorable outcome to immunotherapy.
In this review, we discuss spatial analysis tools that can be used to characterise the tumor microenvironment. We present a number of technologies that are transforming the field and providing insights into the immunopathology associated with a favorable outcome to immunotherapy.</description><identifier>ISSN: 2050-0068</identifier><identifier>EISSN: 2050-0068</identifier><identifier>DOI: 10.1002/cti2.1215</identifier><identifier>PMID: 33251010</identifier><language>eng</language><publisher>Milton, Queensland: John Wiley & Sons, Inc</publisher><subject>Biomarkers ; Cancer immunotherapy ; digital spatial profiling ; FDA approval ; Genomics ; Immune checkpoint inhibitors ; Immunohistochemistry ; Immunotherapy ; Kinases ; Mutation ; Oncology ; Review ; Reviews ; Spatial distribution ; spatial profiling ; tumor microenvironment ; Tumors</subject><ispartof>Clinical & translational immunology, 2020, Vol.9 (11), p.e1215-n/a</ispartof><rights>2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4205-89ad61c42bf45458e4c230f94f576cf1cd5d479b351d233eddd53d011e050a413</citedby><cites>FETCH-LOGICAL-c4205-89ad61c42bf45458e4c230f94f576cf1cd5d479b351d233eddd53d011e050a413</cites><orcidid>0000-0002-6419-3361 ; 0000-0002-7219-8402 ; 0000-0002-3836-1827 ; 0000-0002-6754-5633 ; 0000-0003-3224-7350 ; 0000-0002-4184-1944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680923/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680923/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1416,4022,11560,27921,27922,27923,45572,45573,46050,46474,53789,53791</link.rule.ids></links><search><creatorcontrib>Sadeghi Rad, Habib</creatorcontrib><creatorcontrib>Bazaz, Sajad Razavi</creatorcontrib><creatorcontrib>Monkman, James</creatorcontrib><creatorcontrib>Ebrahimi Warkiani, Majid</creatorcontrib><creatorcontrib>Rezaei, Nima</creatorcontrib><creatorcontrib>O'Byrne, Ken</creatorcontrib><creatorcontrib>Kulasinghe, Arutha</creatorcontrib><title>The evolving landscape of predictive biomarkers in immuno‐oncology with a focus on spatial technologies</title><title>Clinical & translational immunology</title><description>Immunotherapies have shown long‐lasting and unparalleled responses for cancer patients compared to conventional therapy. However, they seem to only be effective in a subset of patients. Therefore, it has become evident that a greater understanding of the tumor microenvironment (TME) is required to understand the nuances which may be at play for a favorable outcome to therapy. The immune contexture of the TME is an important factor in dictating how well a tumor may respond to immune checkpoint inhibitors. While traditional immunohistochemistry techniques allow for the profiling of cells in the tumor, this is often lost when tumors are analysed using bulk tissue genomic approaches. Moreover, the actual cellular proportions, cellular heterogeneity and deeper spatial distribution are lacking in characterisation. Advances in tissue interrogation technologies have given rise to spatially resolved characterisation of the TME. This review aims to provide an overview of the current methodologies that are used to profile the TME, which may provide insights into the immunopathology associated with a favorable outcome to immunotherapy.
In this review, we discuss spatial analysis tools that can be used to characterise the tumor microenvironment. We present a number of technologies that are transforming the field and providing insights into the immunopathology associated with a favorable outcome to immunotherapy.</description><subject>Biomarkers</subject><subject>Cancer immunotherapy</subject><subject>digital spatial profiling</subject><subject>FDA approval</subject><subject>Genomics</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunohistochemistry</subject><subject>Immunotherapy</subject><subject>Kinases</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Review</subject><subject>Reviews</subject><subject>Spatial distribution</subject><subject>spatial profiling</subject><subject>tumor microenvironment</subject><subject>Tumors</subject><issn>2050-0068</issn><issn>2050-0068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9uEzEQxi0EolXogTewxAUOacf_NrsXJBSVUqkSl3C2HHs2cdm1F3s3VW48As_Ik9RLKgRInGak-c2n-eYj5DWDSwbAr-zo-SXjTD0j5xwULAGq-vkf_Rm5yPkeAJiQoFj1kpwJwRUDBufEb_ZI8RC7gw872pngsjUD0tjSIaHzRf2AdOtjb9JXTJn6QH3fTyH-_P4jBhu7uDvSBz_uqaFttFOmMdA8mNGbjo5o92FGPOZX5EVruowXT3VBvny83qw_Le8-39yuP9wtrSwnL-vGuIqVfttKJVWN0nIBbSNbtapsy6xTTq6arVDMcSHQOaeEA8aw-DWSiQV5f9Idpm2PzmIYk-n0kHyxcNTReP33JPi93sWDXlU1NEVyQd4-CaT4bcI86t5ni115DsYpay4rtVKVUHVB3_yD3scphWJvpqQSTVXzQr07UTbFnBO2v49hoOcM9ZyhnjMs7NWJffAdHv8P6vXmlv_aeATWHJ4m</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sadeghi Rad, Habib</creator><creator>Bazaz, Sajad Razavi</creator><creator>Monkman, James</creator><creator>Ebrahimi Warkiani, Majid</creator><creator>Rezaei, Nima</creator><creator>O'Byrne, Ken</creator><creator>Kulasinghe, Arutha</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6419-3361</orcidid><orcidid>https://orcid.org/0000-0002-7219-8402</orcidid><orcidid>https://orcid.org/0000-0002-3836-1827</orcidid><orcidid>https://orcid.org/0000-0002-6754-5633</orcidid><orcidid>https://orcid.org/0000-0003-3224-7350</orcidid><orcidid>https://orcid.org/0000-0002-4184-1944</orcidid></search><sort><creationdate>2020</creationdate><title>The evolving landscape of predictive biomarkers in immuno‐oncology with a focus on spatial technologies</title><author>Sadeghi Rad, Habib ; Bazaz, Sajad Razavi ; Monkman, James ; Ebrahimi Warkiani, Majid ; Rezaei, Nima ; O'Byrne, Ken ; Kulasinghe, Arutha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4205-89ad61c42bf45458e4c230f94f576cf1cd5d479b351d233eddd53d011e050a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers</topic><topic>Cancer immunotherapy</topic><topic>digital spatial profiling</topic><topic>FDA approval</topic><topic>Genomics</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunohistochemistry</topic><topic>Immunotherapy</topic><topic>Kinases</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Review</topic><topic>Reviews</topic><topic>Spatial distribution</topic><topic>spatial profiling</topic><topic>tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghi Rad, Habib</creatorcontrib><creatorcontrib>Bazaz, Sajad Razavi</creatorcontrib><creatorcontrib>Monkman, James</creatorcontrib><creatorcontrib>Ebrahimi Warkiani, Majid</creatorcontrib><creatorcontrib>Rezaei, Nima</creatorcontrib><creatorcontrib>O'Byrne, Ken</creatorcontrib><creatorcontrib>Kulasinghe, Arutha</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical & translational immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadeghi Rad, Habib</au><au>Bazaz, Sajad Razavi</au><au>Monkman, James</au><au>Ebrahimi Warkiani, Majid</au><au>Rezaei, Nima</au><au>O'Byrne, Ken</au><au>Kulasinghe, Arutha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolving landscape of predictive biomarkers in immuno‐oncology with a focus on spatial technologies</atitle><jtitle>Clinical & translational immunology</jtitle><date>2020</date><risdate>2020</risdate><volume>9</volume><issue>11</issue><spage>e1215</spage><epage>n/a</epage><pages>e1215-n/a</pages><issn>2050-0068</issn><eissn>2050-0068</eissn><abstract>Immunotherapies have shown long‐lasting and unparalleled responses for cancer patients compared to conventional therapy. However, they seem to only be effective in a subset of patients. Therefore, it has become evident that a greater understanding of the tumor microenvironment (TME) is required to understand the nuances which may be at play for a favorable outcome to therapy. The immune contexture of the TME is an important factor in dictating how well a tumor may respond to immune checkpoint inhibitors. While traditional immunohistochemistry techniques allow for the profiling of cells in the tumor, this is often lost when tumors are analysed using bulk tissue genomic approaches. Moreover, the actual cellular proportions, cellular heterogeneity and deeper spatial distribution are lacking in characterisation. Advances in tissue interrogation technologies have given rise to spatially resolved characterisation of the TME. This review aims to provide an overview of the current methodologies that are used to profile the TME, which may provide insights into the immunopathology associated with a favorable outcome to immunotherapy.
In this review, we discuss spatial analysis tools that can be used to characterise the tumor microenvironment. We present a number of technologies that are transforming the field and providing insights into the immunopathology associated with a favorable outcome to immunotherapy.</abstract><cop>Milton, Queensland</cop><pub>John Wiley & Sons, Inc</pub><pmid>33251010</pmid><doi>10.1002/cti2.1215</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6419-3361</orcidid><orcidid>https://orcid.org/0000-0002-7219-8402</orcidid><orcidid>https://orcid.org/0000-0002-3836-1827</orcidid><orcidid>https://orcid.org/0000-0002-6754-5633</orcidid><orcidid>https://orcid.org/0000-0003-3224-7350</orcidid><orcidid>https://orcid.org/0000-0002-4184-1944</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-0068 |
ispartof | Clinical & translational immunology, 2020, Vol.9 (11), p.e1215-n/a |
issn | 2050-0068 2050-0068 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7680923 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biomarkers Cancer immunotherapy digital spatial profiling FDA approval Genomics Immune checkpoint inhibitors Immunohistochemistry Immunotherapy Kinases Mutation Oncology Review Reviews Spatial distribution spatial profiling tumor microenvironment Tumors |
title | The evolving landscape of predictive biomarkers in immuno‐oncology with a focus on spatial technologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolving%20landscape%20of%20predictive%20biomarkers%20in%20immuno%E2%80%90oncology%20with%20a%20focus%20on%20spatial%20technologies&rft.jtitle=Clinical%20&%20translational%20immunology&rft.au=Sadeghi%20Rad,%20Habib&rft.date=2020&rft.volume=9&rft.issue=11&rft.spage=e1215&rft.epage=n/a&rft.pages=e1215-n/a&rft.issn=2050-0068&rft.eissn=2050-0068&rft_id=info:doi/10.1002/cti2.1215&rft_dat=%3Cproquest_pubme%3E2464539682%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464539682&rft_id=info:pmid/33251010&rfr_iscdi=true |