Induction of TOC and TIC genes during photomorphogenesis is mediated primarily by cryptochrome 1 in Arabidopsis
The majority of genes encoding photosynthesis-associated proteins in the nucleus are induced by light during photomorphogenesis, allowing plants to establish photoautotrophic growth. Therefore, optimizing the protein import apparatus of plastids, designated as the translocon at the outer and inner e...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-11, Vol.10 (1), p.20255-20255, Article 20255 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20255 |
---|---|
container_issue | 1 |
container_start_page | 20255 |
container_title | Scientific reports |
container_volume | 10 |
creator | Fukazawa, Hitoshi Tada, Akari Richardson, Lynn G. L. Kakizaki, Tomohiro Uehara, Susumu Ito-Inaba, Yasuko Inaba, Takehito |
description | The majority of genes encoding photosynthesis-associated proteins in the nucleus are induced by light during photomorphogenesis, allowing plants to establish photoautotrophic growth. Therefore, optimizing the protein import apparatus of plastids, designated as the translocon at the outer and inner envelope membranes of chloroplast (TOC–TIC) complex, upon light exposure is a prerequisite to the import of abundant nuclear-encoded photosynthesis-associated proteins. However, the mechanism that coordinates the optimization of the TOC–TIC complex with the expression of nuclear-encoded photosynthesis-associated genes remains to be characterized in detail. To address this question, we investigated the mechanism by which plastid protein import is regulated by light during photomorphogenesis in Arabidopsis. We found that the albino
plastid protein import2
(
ppi2
) mutant lacking Toc159 protein import receptors have active photoreceptors, even though the mutant fails to induce the expression of photosynthesis-associated nuclear genes upon light illumination. In contrast, many
TOC
and
TIC
genes are rapidly induced by blue light in both WT and the
ppi2
mutant. We uncovered that this regulation is mediated primarily by cryptochrome 1 (CRY1). Furthermore, deficiency of CRY1 resulted in the decrease of some TOC proteins in vivo. Our results suggest that CRY1 plays key roles in optimizing the content of the TOC–TIC apparatus to accommodate the import of abundant photosynthesis-associated proteins during photomorphogenesis. |
doi_str_mv | 10.1038/s41598-020-76939-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7680107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471575217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-2d479dac68807016cd69dc1926ce43afee52d60f7fea0bcd5dd361a2638d3b393</originalsourceid><addsrcrecordid>eNp9kUtv3CAUhVHUKBMl-QNZREjddOOWhw1mUyka9THSSLOZrBEGPMPIBhfsRvPvw8RpmnYRhHQRnHs4Vx8Atxh9xojWX1KJK1EXiKCCM0FF8XgGLgkqq4JQQj68OS_ATUoHlFdFRInFBVhQSrAgJboEYeXNpEcXPAwt3G6WUHkDt6sl3FlvEzRTdH4Hh30YQx9irs_3LsG8e2ucGq2BQ3S9iq47wuYIdTwOY9D7GHoLMXQe3kfVOBOG3HYNzlvVJXvzUq_Aw_dv2-XPYr35sVrerwtdcT4WxJRcGKVZXSOOMNOGCaNzZqZtSVVrbUUMQy1vrUKNNpUxlGFFGK0NbaigV-Dr7DtMTY6prR-j6uQc9CiDcvLfF-_2chd-S85qhBHPBp9eDGL4Ndk0yt4lbbtOeRumJEnJKEaMIZylH_-THsIUfR4vqziueEXwyZDMKh1DStG2r2EwkiekckYqM1L5jFQ-5qa7t2O8tvwBmAV0FqThBMrGv3-_Y_sE5R-uug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471575217</pqid></control><display><type>article</type><title>Induction of TOC and TIC genes during photomorphogenesis is mediated primarily by cryptochrome 1 in Arabidopsis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fukazawa, Hitoshi ; Tada, Akari ; Richardson, Lynn G. L. ; Kakizaki, Tomohiro ; Uehara, Susumu ; Ito-Inaba, Yasuko ; Inaba, Takehito</creator><creatorcontrib>Fukazawa, Hitoshi ; Tada, Akari ; Richardson, Lynn G. L. ; Kakizaki, Tomohiro ; Uehara, Susumu ; Ito-Inaba, Yasuko ; Inaba, Takehito</creatorcontrib><description>The majority of genes encoding photosynthesis-associated proteins in the nucleus are induced by light during photomorphogenesis, allowing plants to establish photoautotrophic growth. Therefore, optimizing the protein import apparatus of plastids, designated as the translocon at the outer and inner envelope membranes of chloroplast (TOC–TIC) complex, upon light exposure is a prerequisite to the import of abundant nuclear-encoded photosynthesis-associated proteins. However, the mechanism that coordinates the optimization of the TOC–TIC complex with the expression of nuclear-encoded photosynthesis-associated genes remains to be characterized in detail. To address this question, we investigated the mechanism by which plastid protein import is regulated by light during photomorphogenesis in Arabidopsis. We found that the albino
plastid protein import2
(
ppi2
) mutant lacking Toc159 protein import receptors have active photoreceptors, even though the mutant fails to induce the expression of photosynthesis-associated nuclear genes upon light illumination. In contrast, many
TOC
and
TIC
genes are rapidly induced by blue light in both WT and the
ppi2
mutant. We uncovered that this regulation is mediated primarily by cryptochrome 1 (CRY1). Furthermore, deficiency of CRY1 resulted in the decrease of some TOC proteins in vivo. Our results suggest that CRY1 plays key roles in optimizing the content of the TOC–TIC apparatus to accommodate the import of abundant photosynthesis-associated proteins during photomorphogenesis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76939-w</identifier><identifier>PMID: 33219240</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449 ; 631/449/448 ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - physiology ; Chloroplasts ; Cryptochromes - metabolism ; Gene Expression Regulation, Plant - radiation effects ; Genes, Plant ; Humanities and Social Sciences ; Light ; Morphogenesis ; multidisciplinary ; Mutants ; Photomorphogenesis ; Photoreceptors ; Photosynthesis ; Photosynthesis - genetics ; Plastids ; Protein transport ; Proteins ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.20255-20255, Article 20255</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-2d479dac68807016cd69dc1926ce43afee52d60f7fea0bcd5dd361a2638d3b393</citedby><cites>FETCH-LOGICAL-c577t-2d479dac68807016cd69dc1926ce43afee52d60f7fea0bcd5dd361a2638d3b393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680107/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680107/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33219240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fukazawa, Hitoshi</creatorcontrib><creatorcontrib>Tada, Akari</creatorcontrib><creatorcontrib>Richardson, Lynn G. L.</creatorcontrib><creatorcontrib>Kakizaki, Tomohiro</creatorcontrib><creatorcontrib>Uehara, Susumu</creatorcontrib><creatorcontrib>Ito-Inaba, Yasuko</creatorcontrib><creatorcontrib>Inaba, Takehito</creatorcontrib><title>Induction of TOC and TIC genes during photomorphogenesis is mediated primarily by cryptochrome 1 in Arabidopsis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The majority of genes encoding photosynthesis-associated proteins in the nucleus are induced by light during photomorphogenesis, allowing plants to establish photoautotrophic growth. Therefore, optimizing the protein import apparatus of plastids, designated as the translocon at the outer and inner envelope membranes of chloroplast (TOC–TIC) complex, upon light exposure is a prerequisite to the import of abundant nuclear-encoded photosynthesis-associated proteins. However, the mechanism that coordinates the optimization of the TOC–TIC complex with the expression of nuclear-encoded photosynthesis-associated genes remains to be characterized in detail. To address this question, we investigated the mechanism by which plastid protein import is regulated by light during photomorphogenesis in Arabidopsis. We found that the albino
plastid protein import2
(
ppi2
) mutant lacking Toc159 protein import receptors have active photoreceptors, even though the mutant fails to induce the expression of photosynthesis-associated nuclear genes upon light illumination. In contrast, many
TOC
and
TIC
genes are rapidly induced by blue light in both WT and the
ppi2
mutant. We uncovered that this regulation is mediated primarily by cryptochrome 1 (CRY1). Furthermore, deficiency of CRY1 resulted in the decrease of some TOC proteins in vivo. Our results suggest that CRY1 plays key roles in optimizing the content of the TOC–TIC apparatus to accommodate the import of abundant photosynthesis-associated proteins during photomorphogenesis.</description><subject>631/449</subject><subject>631/449/448</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Chloroplasts</subject><subject>Cryptochromes - metabolism</subject><subject>Gene Expression Regulation, Plant - radiation effects</subject><subject>Genes, Plant</subject><subject>Humanities and Social Sciences</subject><subject>Light</subject><subject>Morphogenesis</subject><subject>multidisciplinary</subject><subject>Mutants</subject><subject>Photomorphogenesis</subject><subject>Photoreceptors</subject><subject>Photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Plastids</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv3CAUhVHUKBMl-QNZREjddOOWhw1mUyka9THSSLOZrBEGPMPIBhfsRvPvw8RpmnYRhHQRnHs4Vx8Atxh9xojWX1KJK1EXiKCCM0FF8XgGLgkqq4JQQj68OS_ATUoHlFdFRInFBVhQSrAgJboEYeXNpEcXPAwt3G6WUHkDt6sl3FlvEzRTdH4Hh30YQx9irs_3LsG8e2ucGq2BQ3S9iq47wuYIdTwOY9D7GHoLMXQe3kfVOBOG3HYNzlvVJXvzUq_Aw_dv2-XPYr35sVrerwtdcT4WxJRcGKVZXSOOMNOGCaNzZqZtSVVrbUUMQy1vrUKNNpUxlGFFGK0NbaigV-Dr7DtMTY6prR-j6uQc9CiDcvLfF-_2chd-S85qhBHPBp9eDGL4Ndk0yt4lbbtOeRumJEnJKEaMIZylH_-THsIUfR4vqziueEXwyZDMKh1DStG2r2EwkiekckYqM1L5jFQ-5qa7t2O8tvwBmAV0FqThBMrGv3-_Y_sE5R-uug</recordid><startdate>20201120</startdate><enddate>20201120</enddate><creator>Fukazawa, Hitoshi</creator><creator>Tada, Akari</creator><creator>Richardson, Lynn G. L.</creator><creator>Kakizaki, Tomohiro</creator><creator>Uehara, Susumu</creator><creator>Ito-Inaba, Yasuko</creator><creator>Inaba, Takehito</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201120</creationdate><title>Induction of TOC and TIC genes during photomorphogenesis is mediated primarily by cryptochrome 1 in Arabidopsis</title><author>Fukazawa, Hitoshi ; Tada, Akari ; Richardson, Lynn G. L. ; Kakizaki, Tomohiro ; Uehara, Susumu ; Ito-Inaba, Yasuko ; Inaba, Takehito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-2d479dac68807016cd69dc1926ce43afee52d60f7fea0bcd5dd361a2638d3b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/449</topic><topic>631/449/448</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Chloroplasts</topic><topic>Cryptochromes - metabolism</topic><topic>Gene Expression Regulation, Plant - radiation effects</topic><topic>Genes, Plant</topic><topic>Humanities and Social Sciences</topic><topic>Light</topic><topic>Morphogenesis</topic><topic>multidisciplinary</topic><topic>Mutants</topic><topic>Photomorphogenesis</topic><topic>Photoreceptors</topic><topic>Photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Plastids</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukazawa, Hitoshi</creatorcontrib><creatorcontrib>Tada, Akari</creatorcontrib><creatorcontrib>Richardson, Lynn G. L.</creatorcontrib><creatorcontrib>Kakizaki, Tomohiro</creatorcontrib><creatorcontrib>Uehara, Susumu</creatorcontrib><creatorcontrib>Ito-Inaba, Yasuko</creatorcontrib><creatorcontrib>Inaba, Takehito</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukazawa, Hitoshi</au><au>Tada, Akari</au><au>Richardson, Lynn G. L.</au><au>Kakizaki, Tomohiro</au><au>Uehara, Susumu</au><au>Ito-Inaba, Yasuko</au><au>Inaba, Takehito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction of TOC and TIC genes during photomorphogenesis is mediated primarily by cryptochrome 1 in Arabidopsis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-20</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>20255</spage><epage>20255</epage><pages>20255-20255</pages><artnum>20255</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The majority of genes encoding photosynthesis-associated proteins in the nucleus are induced by light during photomorphogenesis, allowing plants to establish photoautotrophic growth. Therefore, optimizing the protein import apparatus of plastids, designated as the translocon at the outer and inner envelope membranes of chloroplast (TOC–TIC) complex, upon light exposure is a prerequisite to the import of abundant nuclear-encoded photosynthesis-associated proteins. However, the mechanism that coordinates the optimization of the TOC–TIC complex with the expression of nuclear-encoded photosynthesis-associated genes remains to be characterized in detail. To address this question, we investigated the mechanism by which plastid protein import is regulated by light during photomorphogenesis in Arabidopsis. We found that the albino
plastid protein import2
(
ppi2
) mutant lacking Toc159 protein import receptors have active photoreceptors, even though the mutant fails to induce the expression of photosynthesis-associated nuclear genes upon light illumination. In contrast, many
TOC
and
TIC
genes are rapidly induced by blue light in both WT and the
ppi2
mutant. We uncovered that this regulation is mediated primarily by cryptochrome 1 (CRY1). Furthermore, deficiency of CRY1 resulted in the decrease of some TOC proteins in vivo. Our results suggest that CRY1 plays key roles in optimizing the content of the TOC–TIC apparatus to accommodate the import of abundant photosynthesis-associated proteins during photomorphogenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33219240</pmid><doi>10.1038/s41598-020-76939-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-11, Vol.10 (1), p.20255-20255, Article 20255 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7680107 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/449 631/449/448 Arabidopsis Arabidopsis - genetics Arabidopsis - physiology Chloroplasts Cryptochromes - metabolism Gene Expression Regulation, Plant - radiation effects Genes, Plant Humanities and Social Sciences Light Morphogenesis multidisciplinary Mutants Photomorphogenesis Photoreceptors Photosynthesis Photosynthesis - genetics Plastids Protein transport Proteins Science Science (multidisciplinary) |
title | Induction of TOC and TIC genes during photomorphogenesis is mediated primarily by cryptochrome 1 in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20of%20TOC%20and%20TIC%20genes%20during%20photomorphogenesis%20is%20mediated%20primarily%20by%20cryptochrome%201%20in%20Arabidopsis&rft.jtitle=Scientific%20reports&rft.au=Fukazawa,%20Hitoshi&rft.date=2020-11-20&rft.volume=10&rft.issue=1&rft.spage=20255&rft.epage=20255&rft.pages=20255-20255&rft.artnum=20255&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76939-w&rft_dat=%3Cproquest_pubme%3E2471575217%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471575217&rft_id=info:pmid/33219240&rfr_iscdi=true |