A simple score derived from bone marrow immunophenotyping is important for prognostic evaluation in myelodysplastic syndromes
Immunophenotyping of bone marrow (BM) precursors has been used as an ancillary diagnostic tool in myelodysplastic syndromes (MDS), but there is no general agreement about which variables are the most relevant for prognosis. We developed a parsimonious prognostic model based on BM cell populations we...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-11, Vol.10 (1), p.20281-20281, Article 20281 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20281 |
---|---|
container_issue | 1 |
container_start_page | 20281 |
container_title | Scientific reports |
container_volume | 10 |
creator | Vido-Marques, J. R. Reis-Alves, S. C. Saad, S. T. O. Metze, K. Lorand-Metze, I. |
description | Immunophenotyping of bone marrow (BM) precursors has been used as an ancillary diagnostic tool in myelodysplastic syndromes (MDS), but there is no general agreement about which variables are the most relevant for prognosis. We developed a parsimonious prognostic model based on BM cell populations well-defined by phenotype. We analyzed 95 consecutive patients with primary MDS diagnosed at our Institution between 2005 and 2012 where BM immunophenotyping had been performed at diagnosis. Median follow-up: 42 months (4–199). Median age: 67 years (33–79). According to IPSS-R, 71 cases were low or intermediate risk. Flow variables significant in the univariate Cox analysis: “%monocytes/TNCs”, “% CD16
+
monocytes/TNCs”, “total alterations in monocytes”, “% myeloid CD34
+
cells”, “number of abnormal expressions in myeloblasts” and “% of B-cell progenitors”. In the multivariate model remained independent: “% myeloid CD34
+
cells”, B-cell progenitors” and “% CD16
+
monocytes/TNCs”. These variables were categorized by the extreme quartile risk ratio strategy in order to build the score: % myeloid CD34
+
cells” (≥ 2.0% = 1 point), B-cell progenitors” ( |
doi_str_mv | 10.1038/s41598-020-77158-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7679401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471575178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-76eef60e5884ca24723896b4a71b8971c9356b5e01813db47b94626a68fbdbb23</originalsourceid><addsrcrecordid>eNp9kU1rFTEYhQdRbKn9Ay4k4MbNaL4_NkIpWoWCG12HZOad25SZZExmrkzB_27aW2t1YTYJOc97ksNpmpcEvyWY6XeFE2F0iylulSJCtzdPmmOKuWgpo_Tpo_NRc1rKNa5LUMOJed4cMUaJoVocNz_PUAnTPAIqXcqAeshhDz0acpqQTxHQ5HJOP1CYpjWm-QpiWrY5xB0KpV7OKS8uLmhIGc057WIqS-gQ7N24uiWkiEJE0wZj6rcyj-5OLVvsqz-UF82zwY0FTu_3k-bbxw9fzz-1l18uPp-fXbYdV3xplQQYJAahNe8c5YoybaTnThGvjSKdYUJ6AZhownrPlTdcUumkHnzvPWUnzfuD77z6CfoO4pLdaOccarrNJhfs30oMV3aX9lZJZTgm1eDNvUFO31coi51C6WAcXYS0Fku5ZAQLo3hFX_-DXqc1xxqvUrUpJYjSlaIHqsuplAzDw2cItrcF20PBthZs7wq2N3Xo1eMYDyO_66wAOwClSnEH-c_b_7H9Bd5utVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471575178</pqid></control><display><type>article</type><title>A simple score derived from bone marrow immunophenotyping is important for prognostic evaluation in myelodysplastic syndromes</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Vido-Marques, J. R. ; Reis-Alves, S. C. ; Saad, S. T. O. ; Metze, K. ; Lorand-Metze, I.</creator><creatorcontrib>Vido-Marques, J. R. ; Reis-Alves, S. C. ; Saad, S. T. O. ; Metze, K. ; Lorand-Metze, I.</creatorcontrib><description>Immunophenotyping of bone marrow (BM) precursors has been used as an ancillary diagnostic tool in myelodysplastic syndromes (MDS), but there is no general agreement about which variables are the most relevant for prognosis. We developed a parsimonious prognostic model based on BM cell populations well-defined by phenotype. We analyzed 95 consecutive patients with primary MDS diagnosed at our Institution between 2005 and 2012 where BM immunophenotyping had been performed at diagnosis. Median follow-up: 42 months (4–199). Median age: 67 years (33–79). According to IPSS-R, 71 cases were low or intermediate risk. Flow variables significant in the univariate Cox analysis: “%monocytes/TNCs”, “% CD16
+
monocytes/TNCs”, “total alterations in monocytes”, “% myeloid CD34
+
cells”, “number of abnormal expressions in myeloblasts” and “% of B-cell progenitors”. In the multivariate model remained independent: “% myeloid CD34
+
cells”, B-cell progenitors” and “% CD16
+
monocytes/TNCs”. These variables were categorized by the extreme quartile risk ratio strategy in order to build the score: % myeloid CD34
+
cells” (≥ 2.0% = 1 point), B-cell progenitors” (< 0.05% 1 point) and “CD16
+
monocytes/TNCs” (≥ 1.0% 1 point). This score could separate patients with a different survival. There was a weak correlation between the score and IPSS-R. Both had independent prognostic values and so, the flow score adds value for the prognostic evaluation in MDS.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-77158-z</identifier><identifier>PMID: 33219285</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647 ; 631/67 ; 692/308 ; Adult ; Aged ; Antigens, CD34 - metabolism ; Bone marrow ; Bone Marrow - immunology ; Bone Marrow - pathology ; Bone Marrow Cells - immunology ; Bone Marrow Cells - metabolism ; Case-Control Studies ; CD16 antigen ; CD34 antigen ; Cell Separation ; Feasibility Studies ; Female ; Flow Cytometry ; Follow-Up Studies ; GPI-Linked Proteins - metabolism ; Humanities and Social Sciences ; Humans ; Immunophenotyping ; Kaplan-Meier Estimate ; Lymphocytes B ; Male ; Medical prognosis ; Middle Aged ; Models, Statistical ; Monocytes ; multidisciplinary ; Myelodysplastic syndrome ; Myelodysplastic syndromes ; Myelodysplastic Syndromes - diagnosis ; Myelodysplastic Syndromes - immunology ; Myelodysplastic Syndromes - mortality ; Myelodysplastic Syndromes - pathology ; Osteoprogenitor cells ; Phenotypes ; Prognosis ; Receptors, IgG - metabolism ; Risk Assessment - methods ; Science ; Science (multidisciplinary) ; Stem cells</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.20281-20281, Article 20281</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-76eef60e5884ca24723896b4a71b8971c9356b5e01813db47b94626a68fbdbb23</citedby><cites>FETCH-LOGICAL-c474t-76eef60e5884ca24723896b4a71b8971c9356b5e01813db47b94626a68fbdbb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679401/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679401/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33219285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vido-Marques, J. R.</creatorcontrib><creatorcontrib>Reis-Alves, S. C.</creatorcontrib><creatorcontrib>Saad, S. T. O.</creatorcontrib><creatorcontrib>Metze, K.</creatorcontrib><creatorcontrib>Lorand-Metze, I.</creatorcontrib><title>A simple score derived from bone marrow immunophenotyping is important for prognostic evaluation in myelodysplastic syndromes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Immunophenotyping of bone marrow (BM) precursors has been used as an ancillary diagnostic tool in myelodysplastic syndromes (MDS), but there is no general agreement about which variables are the most relevant for prognosis. We developed a parsimonious prognostic model based on BM cell populations well-defined by phenotype. We analyzed 95 consecutive patients with primary MDS diagnosed at our Institution between 2005 and 2012 where BM immunophenotyping had been performed at diagnosis. Median follow-up: 42 months (4–199). Median age: 67 years (33–79). According to IPSS-R, 71 cases were low or intermediate risk. Flow variables significant in the univariate Cox analysis: “%monocytes/TNCs”, “% CD16
+
monocytes/TNCs”, “total alterations in monocytes”, “% myeloid CD34
+
cells”, “number of abnormal expressions in myeloblasts” and “% of B-cell progenitors”. In the multivariate model remained independent: “% myeloid CD34
+
cells”, B-cell progenitors” and “% CD16
+
monocytes/TNCs”. These variables were categorized by the extreme quartile risk ratio strategy in order to build the score: % myeloid CD34
+
cells” (≥ 2.0% = 1 point), B-cell progenitors” (< 0.05% 1 point) and “CD16
+
monocytes/TNCs” (≥ 1.0% 1 point). This score could separate patients with a different survival. There was a weak correlation between the score and IPSS-R. Both had independent prognostic values and so, the flow score adds value for the prognostic evaluation in MDS.</description><subject>631/1647</subject><subject>631/67</subject><subject>692/308</subject><subject>Adult</subject><subject>Aged</subject><subject>Antigens, CD34 - metabolism</subject><subject>Bone marrow</subject><subject>Bone Marrow - immunology</subject><subject>Bone Marrow - pathology</subject><subject>Bone Marrow Cells - immunology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Case-Control Studies</subject><subject>CD16 antigen</subject><subject>CD34 antigen</subject><subject>Cell Separation</subject><subject>Feasibility Studies</subject><subject>Female</subject><subject>Flow Cytometry</subject><subject>Follow-Up Studies</subject><subject>GPI-Linked Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunophenotyping</subject><subject>Kaplan-Meier Estimate</subject><subject>Lymphocytes B</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Monocytes</subject><subject>multidisciplinary</subject><subject>Myelodysplastic syndrome</subject><subject>Myelodysplastic syndromes</subject><subject>Myelodysplastic Syndromes - diagnosis</subject><subject>Myelodysplastic Syndromes - immunology</subject><subject>Myelodysplastic Syndromes - mortality</subject><subject>Myelodysplastic Syndromes - pathology</subject><subject>Osteoprogenitor cells</subject><subject>Phenotypes</subject><subject>Prognosis</subject><subject>Receptors, IgG - metabolism</subject><subject>Risk Assessment - methods</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rFTEYhQdRbKn9Ay4k4MbNaL4_NkIpWoWCG12HZOad25SZZExmrkzB_27aW2t1YTYJOc97ksNpmpcEvyWY6XeFE2F0iylulSJCtzdPmmOKuWgpo_Tpo_NRc1rKNa5LUMOJed4cMUaJoVocNz_PUAnTPAIqXcqAeshhDz0acpqQTxHQ5HJOP1CYpjWm-QpiWrY5xB0KpV7OKS8uLmhIGc057WIqS-gQ7N24uiWkiEJE0wZj6rcyj-5OLVvsqz-UF82zwY0FTu_3k-bbxw9fzz-1l18uPp-fXbYdV3xplQQYJAahNe8c5YoybaTnThGvjSKdYUJ6AZhownrPlTdcUumkHnzvPWUnzfuD77z6CfoO4pLdaOccarrNJhfs30oMV3aX9lZJZTgm1eDNvUFO31coi51C6WAcXYS0Fku5ZAQLo3hFX_-DXqc1xxqvUrUpJYjSlaIHqsuplAzDw2cItrcF20PBthZs7wq2N3Xo1eMYDyO_66wAOwClSnEH-c_b_7H9Bd5utVQ</recordid><startdate>20201120</startdate><enddate>20201120</enddate><creator>Vido-Marques, J. R.</creator><creator>Reis-Alves, S. C.</creator><creator>Saad, S. T. O.</creator><creator>Metze, K.</creator><creator>Lorand-Metze, I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201120</creationdate><title>A simple score derived from bone marrow immunophenotyping is important for prognostic evaluation in myelodysplastic syndromes</title><author>Vido-Marques, J. R. ; Reis-Alves, S. C. ; Saad, S. T. O. ; Metze, K. ; Lorand-Metze, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-76eef60e5884ca24723896b4a71b8971c9356b5e01813db47b94626a68fbdbb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647</topic><topic>631/67</topic><topic>692/308</topic><topic>Adult</topic><topic>Aged</topic><topic>Antigens, CD34 - metabolism</topic><topic>Bone marrow</topic><topic>Bone Marrow - immunology</topic><topic>Bone Marrow - pathology</topic><topic>Bone Marrow Cells - immunology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Case-Control Studies</topic><topic>CD16 antigen</topic><topic>CD34 antigen</topic><topic>Cell Separation</topic><topic>Feasibility Studies</topic><topic>Female</topic><topic>Flow Cytometry</topic><topic>Follow-Up Studies</topic><topic>GPI-Linked Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunophenotyping</topic><topic>Kaplan-Meier Estimate</topic><topic>Lymphocytes B</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Monocytes</topic><topic>multidisciplinary</topic><topic>Myelodysplastic syndrome</topic><topic>Myelodysplastic syndromes</topic><topic>Myelodysplastic Syndromes - diagnosis</topic><topic>Myelodysplastic Syndromes - immunology</topic><topic>Myelodysplastic Syndromes - mortality</topic><topic>Myelodysplastic Syndromes - pathology</topic><topic>Osteoprogenitor cells</topic><topic>Phenotypes</topic><topic>Prognosis</topic><topic>Receptors, IgG - metabolism</topic><topic>Risk Assessment - methods</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vido-Marques, J. R.</creatorcontrib><creatorcontrib>Reis-Alves, S. C.</creatorcontrib><creatorcontrib>Saad, S. T. O.</creatorcontrib><creatorcontrib>Metze, K.</creatorcontrib><creatorcontrib>Lorand-Metze, I.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vido-Marques, J. R.</au><au>Reis-Alves, S. C.</au><au>Saad, S. T. O.</au><au>Metze, K.</au><au>Lorand-Metze, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple score derived from bone marrow immunophenotyping is important for prognostic evaluation in myelodysplastic syndromes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-20</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>20281</spage><epage>20281</epage><pages>20281-20281</pages><artnum>20281</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Immunophenotyping of bone marrow (BM) precursors has been used as an ancillary diagnostic tool in myelodysplastic syndromes (MDS), but there is no general agreement about which variables are the most relevant for prognosis. We developed a parsimonious prognostic model based on BM cell populations well-defined by phenotype. We analyzed 95 consecutive patients with primary MDS diagnosed at our Institution between 2005 and 2012 where BM immunophenotyping had been performed at diagnosis. Median follow-up: 42 months (4–199). Median age: 67 years (33–79). According to IPSS-R, 71 cases were low or intermediate risk. Flow variables significant in the univariate Cox analysis: “%monocytes/TNCs”, “% CD16
+
monocytes/TNCs”, “total alterations in monocytes”, “% myeloid CD34
+
cells”, “number of abnormal expressions in myeloblasts” and “% of B-cell progenitors”. In the multivariate model remained independent: “% myeloid CD34
+
cells”, B-cell progenitors” and “% CD16
+
monocytes/TNCs”. These variables were categorized by the extreme quartile risk ratio strategy in order to build the score: % myeloid CD34
+
cells” (≥ 2.0% = 1 point), B-cell progenitors” (< 0.05% 1 point) and “CD16
+
monocytes/TNCs” (≥ 1.0% 1 point). This score could separate patients with a different survival. There was a weak correlation between the score and IPSS-R. Both had independent prognostic values and so, the flow score adds value for the prognostic evaluation in MDS.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33219285</pmid><doi>10.1038/s41598-020-77158-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-11, Vol.10 (1), p.20281-20281, Article 20281 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7679401 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/1647 631/67 692/308 Adult Aged Antigens, CD34 - metabolism Bone marrow Bone Marrow - immunology Bone Marrow - pathology Bone Marrow Cells - immunology Bone Marrow Cells - metabolism Case-Control Studies CD16 antigen CD34 antigen Cell Separation Feasibility Studies Female Flow Cytometry Follow-Up Studies GPI-Linked Proteins - metabolism Humanities and Social Sciences Humans Immunophenotyping Kaplan-Meier Estimate Lymphocytes B Male Medical prognosis Middle Aged Models, Statistical Monocytes multidisciplinary Myelodysplastic syndrome Myelodysplastic syndromes Myelodysplastic Syndromes - diagnosis Myelodysplastic Syndromes - immunology Myelodysplastic Syndromes - mortality Myelodysplastic Syndromes - pathology Osteoprogenitor cells Phenotypes Prognosis Receptors, IgG - metabolism Risk Assessment - methods Science Science (multidisciplinary) Stem cells |
title | A simple score derived from bone marrow immunophenotyping is important for prognostic evaluation in myelodysplastic syndromes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20score%20derived%20from%20bone%20marrow%20immunophenotyping%20is%20important%20for%20prognostic%20evaluation%20in%20myelodysplastic%20syndromes&rft.jtitle=Scientific%20reports&rft.au=Vido-Marques,%20J.%20R.&rft.date=2020-11-20&rft.volume=10&rft.issue=1&rft.spage=20281&rft.epage=20281&rft.pages=20281-20281&rft.artnum=20281&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-77158-z&rft_dat=%3Cproquest_pubme%3E2471575178%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471575178&rft_id=info:pmid/33219285&rfr_iscdi=true |