AAV-mediated cardiac gene transfer of wild-type desmin in mouse models for recessive desminopathies
Mutations in the human desmin gene cause autosomal-dominant and recessive cardiomyopathies and myopathies with marked phenotypic variability. Here, we investigated the effects of adeno-associated virus (AAV)-mediated cardiac wild-type desmin expression in homozygous desmin knockout (DKO) and homozyg...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2019-11, Vol.27 (10-11), p.516-524 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 524 |
---|---|
container_issue | 10-11 |
container_start_page | 516 |
container_title | Gene therapy |
container_volume | 27 |
creator | Ruppert, T. Heckmann, M. B. Rapti, K. Schultheis, D. Jungmann, A. Katus, H. A. Winter, L. Frey, N. Clemen, C. S. Schröder, R. Müller, O. J. |
description | Mutations in the human desmin gene cause autosomal-dominant and recessive cardiomyopathies and myopathies with marked phenotypic variability. Here, we investigated the effects of adeno-associated virus (AAV)-mediated cardiac wild-type desmin expression in homozygous desmin knockout (DKO) and homozygous R349P desmin knockin (DKI) mice. These mice serve as disease models for two subforms of autosomal-recessive desminopathies, the former for the one with a complete lack of desmin protein and the latter for the one with solely mutant desmin protein expression in conjunction with protein aggregation pathology in striated muscle. Two-month-old mice were injected with either a single dose of 5 × 10
12
AAV9-hTNT2-mDes (AAV-Des) vector genomes or NaCl as control. One week after injection, mice were subjected to a forced swimming exercise protocol for 4 weeks. Cardiac function was monitored over a period of 15 month after injection and before the mice were sacrificed for biochemical and morphological analysis. AAV-mediated cardiac expression of wild-type desmin in both the homozygous DKO and DKI backgrounds reached levels seen in wild-type mice. Notably, AAV-Des treated DKO mice showed a regular subcellular distribution of desmin as well as a normalization of functional and morphological cardiac parameters. Treated DKI mice, however, showed an aberrant subcellular localization of desmin, unchanged functional cardiac parameters, and a trend toward an increased cardiac fibrosis. In conclusion, the effect of a high-dose AAV9-based desmin gene therapy is highly beneficial for the heart in DKO animals, but not in DKI mice. |
doi_str_mv | 10.1038/s41434-020-0147-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7674151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650821007</galeid><sourcerecordid>A650821007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-62b429929941f9168f1766f5906d48b1b31a1660be8a8d9c4dc42fc4b8ecf38c3</originalsourceid><addsrcrecordid>eNp1kt2LFSEYxoco2tPWH9BNDARRF27qeNS5CQ5LHwsLQV-34jivc1xm9KTO1v73eTj7NVEoKvp7Hnlfnqp6TvAJwY18mxhhDUOYYoQJE0g8qFZl52jNOH1YrXDLWyQIlUfVk5QuMMZMSPq4OmpoQ2mRrCqz2fxAE_ROZ-hro2M5mXoAD3WO2icLsQ62_uXGHuWrHdQ9pMn5uswpzAnK2sOYahtiHcFASu7yBgo7nbcO0tPqkdVjgmfX-3H1_cP7b6ef0Pnnj2enm3NkOKYZcdox2rZlMmJbwqUlgnO7bjHvmexI1xBNOMcdSC371rDeMGoN6yQY20jTHFfvDr67uSslGfClhFHtopt0vFJBO7V88W6rhnCpBBeMrEkxeH1tEMPPGVJWk0sGxlF7KMUq2rSMMsIZK-jLv9CLMEdfylOUCda2hAhyRw16BOW8DeVfszdVG77GkhKMRaFO_kGV0cPkTPBgXblfCN4sBIXJ8DsPek5JnX39smRf3WO3oMe8TWGcsws-LUFyAE0MKUWwt40jWO3jpg5xUyVuah83tde8uN_xW8VNvgpAD0AqT36AeNem_7v-AV2X3SU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474991171</pqid></control><display><type>article</type><title>AAV-mediated cardiac gene transfer of wild-type desmin in mouse models for recessive desminopathies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ruppert, T. ; Heckmann, M. B. ; Rapti, K. ; Schultheis, D. ; Jungmann, A. ; Katus, H. A. ; Winter, L. ; Frey, N. ; Clemen, C. S. ; Schröder, R. ; Müller, O. J.</creator><creatorcontrib>Ruppert, T. ; Heckmann, M. B. ; Rapti, K. ; Schultheis, D. ; Jungmann, A. ; Katus, H. A. ; Winter, L. ; Frey, N. ; Clemen, C. S. ; Schröder, R. ; Müller, O. J.</creatorcontrib><description>Mutations in the human desmin gene cause autosomal-dominant and recessive cardiomyopathies and myopathies with marked phenotypic variability. Here, we investigated the effects of adeno-associated virus (AAV)-mediated cardiac wild-type desmin expression in homozygous desmin knockout (DKO) and homozygous R349P desmin knockin (DKI) mice. These mice serve as disease models for two subforms of autosomal-recessive desminopathies, the former for the one with a complete lack of desmin protein and the latter for the one with solely mutant desmin protein expression in conjunction with protein aggregation pathology in striated muscle. Two-month-old mice were injected with either a single dose of 5 × 10
12
AAV9-hTNT2-mDes (AAV-Des) vector genomes or NaCl as control. One week after injection, mice were subjected to a forced swimming exercise protocol for 4 weeks. Cardiac function was monitored over a period of 15 month after injection and before the mice were sacrificed for biochemical and morphological analysis. AAV-mediated cardiac expression of wild-type desmin in both the homozygous DKO and DKI backgrounds reached levels seen in wild-type mice. Notably, AAV-Des treated DKO mice showed a regular subcellular distribution of desmin as well as a normalization of functional and morphological cardiac parameters. Treated DKI mice, however, showed an aberrant subcellular localization of desmin, unchanged functional cardiac parameters, and a trend toward an increased cardiac fibrosis. In conclusion, the effect of a high-dose AAV9-based desmin gene therapy is highly beneficial for the heart in DKO animals, but not in DKI mice.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/s41434-020-0147-7</identifier><identifier>PMID: 32322014</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>42/44 ; 59 ; 631/208/2489/201 ; 64 ; 64/60 ; 692/699/75 ; Animal models ; Biomedical and Life Sciences ; Biomedicine ; Cardiomyopathy ; Care and treatment ; Case studies ; Cell Biology ; Dependoviruses ; Desmin ; Fibrosis ; Gene Expression ; Gene Therapy ; Genetic aspects ; Genetic disorders ; Genetic variability ; Genetic vectors ; Genomes ; Heart ; Heart diseases ; Human Genetics ; Injection ; Intermediate filament proteins ; Localization ; Methods ; Morphology ; Nanotechnology ; Protein interaction ; Proteins ; Skeletal muscle ; Sodium chloride</subject><ispartof>Gene therapy, 2019-11, Vol.27 (10-11), p.516-524</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-62b429929941f9168f1766f5906d48b1b31a1660be8a8d9c4dc42fc4b8ecf38c3</citedby><cites>FETCH-LOGICAL-c602t-62b429929941f9168f1766f5906d48b1b31a1660be8a8d9c4dc42fc4b8ecf38c3</cites><orcidid>0000-0002-3085-1282 ; 0000-0002-1291-4219 ; 0000-0001-8223-2638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41434-020-0147-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41434-020-0147-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32322014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruppert, T.</creatorcontrib><creatorcontrib>Heckmann, M. B.</creatorcontrib><creatorcontrib>Rapti, K.</creatorcontrib><creatorcontrib>Schultheis, D.</creatorcontrib><creatorcontrib>Jungmann, A.</creatorcontrib><creatorcontrib>Katus, H. A.</creatorcontrib><creatorcontrib>Winter, L.</creatorcontrib><creatorcontrib>Frey, N.</creatorcontrib><creatorcontrib>Clemen, C. S.</creatorcontrib><creatorcontrib>Schröder, R.</creatorcontrib><creatorcontrib>Müller, O. J.</creatorcontrib><title>AAV-mediated cardiac gene transfer of wild-type desmin in mouse models for recessive desminopathies</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>Mutations in the human desmin gene cause autosomal-dominant and recessive cardiomyopathies and myopathies with marked phenotypic variability. Here, we investigated the effects of adeno-associated virus (AAV)-mediated cardiac wild-type desmin expression in homozygous desmin knockout (DKO) and homozygous R349P desmin knockin (DKI) mice. These mice serve as disease models for two subforms of autosomal-recessive desminopathies, the former for the one with a complete lack of desmin protein and the latter for the one with solely mutant desmin protein expression in conjunction with protein aggregation pathology in striated muscle. Two-month-old mice were injected with either a single dose of 5 × 10
12
AAV9-hTNT2-mDes (AAV-Des) vector genomes or NaCl as control. One week after injection, mice were subjected to a forced swimming exercise protocol for 4 weeks. Cardiac function was monitored over a period of 15 month after injection and before the mice were sacrificed for biochemical and morphological analysis. AAV-mediated cardiac expression of wild-type desmin in both the homozygous DKO and DKI backgrounds reached levels seen in wild-type mice. Notably, AAV-Des treated DKO mice showed a regular subcellular distribution of desmin as well as a normalization of functional and morphological cardiac parameters. Treated DKI mice, however, showed an aberrant subcellular localization of desmin, unchanged functional cardiac parameters, and a trend toward an increased cardiac fibrosis. In conclusion, the effect of a high-dose AAV9-based desmin gene therapy is highly beneficial for the heart in DKO animals, but not in DKI mice.</description><subject>42/44</subject><subject>59</subject><subject>631/208/2489/201</subject><subject>64</subject><subject>64/60</subject><subject>692/699/75</subject><subject>Animal models</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cardiomyopathy</subject><subject>Care and treatment</subject><subject>Case studies</subject><subject>Cell Biology</subject><subject>Dependoviruses</subject><subject>Desmin</subject><subject>Fibrosis</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genetic aspects</subject><subject>Genetic disorders</subject><subject>Genetic variability</subject><subject>Genetic vectors</subject><subject>Genomes</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Human Genetics</subject><subject>Injection</subject><subject>Intermediate filament proteins</subject><subject>Localization</subject><subject>Methods</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Skeletal muscle</subject><subject>Sodium chloride</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kt2LFSEYxoco2tPWH9BNDARRF27qeNS5CQ5LHwsLQV-34jivc1xm9KTO1v73eTj7NVEoKvp7Hnlfnqp6TvAJwY18mxhhDUOYYoQJE0g8qFZl52jNOH1YrXDLWyQIlUfVk5QuMMZMSPq4OmpoQ2mRrCqz2fxAE_ROZ-hro2M5mXoAD3WO2icLsQ62_uXGHuWrHdQ9pMn5uswpzAnK2sOYahtiHcFASu7yBgo7nbcO0tPqkdVjgmfX-3H1_cP7b6ef0Pnnj2enm3NkOKYZcdox2rZlMmJbwqUlgnO7bjHvmexI1xBNOMcdSC371rDeMGoN6yQY20jTHFfvDr67uSslGfClhFHtopt0vFJBO7V88W6rhnCpBBeMrEkxeH1tEMPPGVJWk0sGxlF7KMUq2rSMMsIZK-jLv9CLMEdfylOUCda2hAhyRw16BOW8DeVfszdVG77GkhKMRaFO_kGV0cPkTPBgXblfCN4sBIXJ8DsPek5JnX39smRf3WO3oMe8TWGcsws-LUFyAE0MKUWwt40jWO3jpg5xUyVuah83tde8uN_xW8VNvgpAD0AqT36AeNem_7v-AV2X3SU</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Ruppert, T.</creator><creator>Heckmann, M. B.</creator><creator>Rapti, K.</creator><creator>Schultheis, D.</creator><creator>Jungmann, A.</creator><creator>Katus, H. A.</creator><creator>Winter, L.</creator><creator>Frey, N.</creator><creator>Clemen, C. S.</creator><creator>Schröder, R.</creator><creator>Müller, O. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3085-1282</orcidid><orcidid>https://orcid.org/0000-0002-1291-4219</orcidid><orcidid>https://orcid.org/0000-0001-8223-2638</orcidid></search><sort><creationdate>20191101</creationdate><title>AAV-mediated cardiac gene transfer of wild-type desmin in mouse models for recessive desminopathies</title><author>Ruppert, T. ; Heckmann, M. B. ; Rapti, K. ; Schultheis, D. ; Jungmann, A. ; Katus, H. A. ; Winter, L. ; Frey, N. ; Clemen, C. S. ; Schröder, R. ; Müller, O. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-62b429929941f9168f1766f5906d48b1b31a1660be8a8d9c4dc42fc4b8ecf38c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>42/44</topic><topic>59</topic><topic>631/208/2489/201</topic><topic>64</topic><topic>64/60</topic><topic>692/699/75</topic><topic>Animal models</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cardiomyopathy</topic><topic>Care and treatment</topic><topic>Case studies</topic><topic>Cell Biology</topic><topic>Dependoviruses</topic><topic>Desmin</topic><topic>Fibrosis</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genetic aspects</topic><topic>Genetic disorders</topic><topic>Genetic variability</topic><topic>Genetic vectors</topic><topic>Genomes</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Human Genetics</topic><topic>Injection</topic><topic>Intermediate filament proteins</topic><topic>Localization</topic><topic>Methods</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Skeletal muscle</topic><topic>Sodium chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruppert, T.</creatorcontrib><creatorcontrib>Heckmann, M. B.</creatorcontrib><creatorcontrib>Rapti, K.</creatorcontrib><creatorcontrib>Schultheis, D.</creatorcontrib><creatorcontrib>Jungmann, A.</creatorcontrib><creatorcontrib>Katus, H. A.</creatorcontrib><creatorcontrib>Winter, L.</creatorcontrib><creatorcontrib>Frey, N.</creatorcontrib><creatorcontrib>Clemen, C. S.</creatorcontrib><creatorcontrib>Schröder, R.</creatorcontrib><creatorcontrib>Müller, O. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruppert, T.</au><au>Heckmann, M. B.</au><au>Rapti, K.</au><au>Schultheis, D.</au><au>Jungmann, A.</au><au>Katus, H. A.</au><au>Winter, L.</au><au>Frey, N.</au><au>Clemen, C. S.</au><au>Schröder, R.</au><au>Müller, O. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AAV-mediated cardiac gene transfer of wild-type desmin in mouse models for recessive desminopathies</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>27</volume><issue>10-11</issue><spage>516</spage><epage>524</epage><pages>516-524</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>Mutations in the human desmin gene cause autosomal-dominant and recessive cardiomyopathies and myopathies with marked phenotypic variability. Here, we investigated the effects of adeno-associated virus (AAV)-mediated cardiac wild-type desmin expression in homozygous desmin knockout (DKO) and homozygous R349P desmin knockin (DKI) mice. These mice serve as disease models for two subforms of autosomal-recessive desminopathies, the former for the one with a complete lack of desmin protein and the latter for the one with solely mutant desmin protein expression in conjunction with protein aggregation pathology in striated muscle. Two-month-old mice were injected with either a single dose of 5 × 10
12
AAV9-hTNT2-mDes (AAV-Des) vector genomes or NaCl as control. One week after injection, mice were subjected to a forced swimming exercise protocol for 4 weeks. Cardiac function was monitored over a period of 15 month after injection and before the mice were sacrificed for biochemical and morphological analysis. AAV-mediated cardiac expression of wild-type desmin in both the homozygous DKO and DKI backgrounds reached levels seen in wild-type mice. Notably, AAV-Des treated DKO mice showed a regular subcellular distribution of desmin as well as a normalization of functional and morphological cardiac parameters. Treated DKI mice, however, showed an aberrant subcellular localization of desmin, unchanged functional cardiac parameters, and a trend toward an increased cardiac fibrosis. In conclusion, the effect of a high-dose AAV9-based desmin gene therapy is highly beneficial for the heart in DKO animals, but not in DKI mice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32322014</pmid><doi>10.1038/s41434-020-0147-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3085-1282</orcidid><orcidid>https://orcid.org/0000-0002-1291-4219</orcidid><orcidid>https://orcid.org/0000-0001-8223-2638</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-7128 |
ispartof | Gene therapy, 2019-11, Vol.27 (10-11), p.516-524 |
issn | 0969-7128 1476-5462 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7674151 |
source | SpringerLink Journals - AutoHoldings |
subjects | 42/44 59 631/208/2489/201 64 64/60 692/699/75 Animal models Biomedical and Life Sciences Biomedicine Cardiomyopathy Care and treatment Case studies Cell Biology Dependoviruses Desmin Fibrosis Gene Expression Gene Therapy Genetic aspects Genetic disorders Genetic variability Genetic vectors Genomes Heart Heart diseases Human Genetics Injection Intermediate filament proteins Localization Methods Morphology Nanotechnology Protein interaction Proteins Skeletal muscle Sodium chloride |
title | AAV-mediated cardiac gene transfer of wild-type desmin in mouse models for recessive desminopathies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AAV-mediated%20cardiac%20gene%20transfer%20of%20wild-type%20desmin%20in%20mouse%20models%20for%20recessive%20desminopathies&rft.jtitle=Gene%20therapy&rft.au=Ruppert,%20T.&rft.date=2019-11-01&rft.volume=27&rft.issue=10-11&rft.spage=516&rft.epage=524&rft.pages=516-524&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/s41434-020-0147-7&rft_dat=%3Cgale_pubme%3EA650821007%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474991171&rft_id=info:pmid/32322014&rft_galeid=A650821007&rfr_iscdi=true |