Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex
Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct a...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2020-11, Vol.40 (47), p.9028-9042 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9042 |
---|---|
container_issue | 47 |
container_start_page | 9028 |
container_title | The Journal of neuroscience |
container_volume | 40 |
creator | Martens, Louise Kroemer, Nils B Teckentrup, Vanessa Colic, Lejla Palomero-Gallagher, Nicola Li, Meng Walter, Martin |
description | Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as
and
of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area
predicted pgACC glutamate better than chance (
= 0.324) and explained more variance compared with area
using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information.
Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders. |
doi_str_mv | 10.1523/JNEUROSCI.0897-20.2020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7673009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450667530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-7dc34383aeccf5be0e6a2018db245d2aa6bb49e6dcf287abb26c8c983d8f50843</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EokvhK1SRuHDJMrEdO7kglaj_0IoioOJoOc5k15VjF8epKJ--SVtWwMmy3u89zcwj5KiAdVFS9v7T55Orr5ffmos1VLXMKawpUHhGVrNa55RD8ZysgErIBZf8gLwax2sAkFDIl-SAMeCi5OWKTJtgtLO_scu-ROysSTb4LPTZmZuSHnTCrI9hyH7sgsP8Y9TWZ6eTf8C0y5rgPc6fW5vuFlfa4ZKzRT_N6rFPGG2IWWP9dnJLWBNiwl-vyYteuxHfPL2H5Or05Htznm8uzy6a401uOKcpl51hnFVMozF92SKg0BSKqmspLzuqtWhbXqPoTE8rqduWClOZumJd1ZdQcXZIPjzm3kztgJ1Bn6J26ibaQcc7FbRV_yre7tQ23CopJAOo54B3TwEx_JxwTGqwo0HntMcwjWqeA4SQJYMZffsfeh2mOB9poSR_uPhCiUfKxDCOEfv9MAWopVm1b1YtzSoKaml2Nh79vcre9qdKdg_W6qMs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474304650</pqid></control><display><type>article</type><title>Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Martens, Louise ; Kroemer, Nils B ; Teckentrup, Vanessa ; Colic, Lejla ; Palomero-Gallagher, Nicola ; Li, Meng ; Walter, Martin</creator><creatorcontrib>Martens, Louise ; Kroemer, Nils B ; Teckentrup, Vanessa ; Colic, Lejla ; Palomero-Gallagher, Nicola ; Li, Meng ; Walter, Martin</creatorcontrib><description>Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as
and
of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area
predicted pgACC glutamate better than chance (
= 0.324) and explained more variance compared with area
using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information.
Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0897-20.2020</identifier><identifier>PMID: 33046545</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Adult ; Brain ; Brain architecture ; Brain Mapping ; Cortex (cingulate) ; Female ; Functional anatomy ; Functional magnetic resonance imaging ; gamma-Aminobutyric Acid - genetics ; gamma-Aminobutyric Acid - metabolism ; Glutamic Acid - genetics ; Glutamic Acid - physiology ; Gray Matter - diagnostic imaging ; Gyrus Cinguli - diagnostic imaging ; Gyrus Cinguli - growth & development ; Gyrus Cinguli - physiology ; Humans ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy ; Male ; Medical imaging ; Mental disorders ; Nervous system ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiology ; Neuroimaging ; Neurosciences ; Neurotransmitter Agents - genetics ; Neurotransmitter Agents - physiology ; Neurotransmitters ; Regression analysis ; γ-Aminobutyric acid</subject><ispartof>The Journal of neuroscience, 2020-11, Vol.40 (47), p.9028-9042</ispartof><rights>Copyright © 2020 the authors.</rights><rights>Copyright Society for Neuroscience Nov 18, 2020</rights><rights>Copyright © 2020 the authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-7dc34383aeccf5be0e6a2018db245d2aa6bb49e6dcf287abb26c8c983d8f50843</citedby><cites>FETCH-LOGICAL-c442t-7dc34383aeccf5be0e6a2018db245d2aa6bb49e6dcf287abb26c8c983d8f50843</cites><orcidid>0000-0002-9974-4557 ; 0000-0003-4463-8578 ; 0000-0001-7857-4483 ; 0000-0002-9552-3781 ; 0000-0002-8320-5241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673009/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673009/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33046545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martens, Louise</creatorcontrib><creatorcontrib>Kroemer, Nils B</creatorcontrib><creatorcontrib>Teckentrup, Vanessa</creatorcontrib><creatorcontrib>Colic, Lejla</creatorcontrib><creatorcontrib>Palomero-Gallagher, Nicola</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Walter, Martin</creatorcontrib><title>Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as
and
of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area
predicted pgACC glutamate better than chance (
= 0.324) and explained more variance compared with area
using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information.
Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders.</description><subject>Adult</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Brain Mapping</subject><subject>Cortex (cingulate)</subject><subject>Female</subject><subject>Functional anatomy</subject><subject>Functional magnetic resonance imaging</subject><subject>gamma-Aminobutyric Acid - genetics</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Glutamic Acid - genetics</subject><subject>Glutamic Acid - physiology</subject><subject>Gray Matter - diagnostic imaging</subject><subject>Gyrus Cinguli - diagnostic imaging</subject><subject>Gyrus Cinguli - growth & development</subject><subject>Gyrus Cinguli - physiology</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiology</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Neurotransmitter Agents - genetics</subject><subject>Neurotransmitter Agents - physiology</subject><subject>Neurotransmitters</subject><subject>Regression analysis</subject><subject>γ-Aminobutyric acid</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS0EokvhK1SRuHDJMrEdO7kglaj_0IoioOJoOc5k15VjF8epKJ--SVtWwMmy3u89zcwj5KiAdVFS9v7T55Orr5ffmos1VLXMKawpUHhGVrNa55RD8ZysgErIBZf8gLwax2sAkFDIl-SAMeCi5OWKTJtgtLO_scu-ROysSTb4LPTZmZuSHnTCrI9hyH7sgsP8Y9TWZ6eTf8C0y5rgPc6fW5vuFlfa4ZKzRT_N6rFPGG2IWWP9dnJLWBNiwl-vyYteuxHfPL2H5Or05Htznm8uzy6a401uOKcpl51hnFVMozF92SKg0BSKqmspLzuqtWhbXqPoTE8rqduWClOZumJd1ZdQcXZIPjzm3kztgJ1Bn6J26ibaQcc7FbRV_yre7tQ23CopJAOo54B3TwEx_JxwTGqwo0HntMcwjWqeA4SQJYMZffsfeh2mOB9poSR_uPhCiUfKxDCOEfv9MAWopVm1b1YtzSoKaml2Nh79vcre9qdKdg_W6qMs</recordid><startdate>20201118</startdate><enddate>20201118</enddate><creator>Martens, Louise</creator><creator>Kroemer, Nils B</creator><creator>Teckentrup, Vanessa</creator><creator>Colic, Lejla</creator><creator>Palomero-Gallagher, Nicola</creator><creator>Li, Meng</creator><creator>Walter, Martin</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9974-4557</orcidid><orcidid>https://orcid.org/0000-0003-4463-8578</orcidid><orcidid>https://orcid.org/0000-0001-7857-4483</orcidid><orcidid>https://orcid.org/0000-0002-9552-3781</orcidid><orcidid>https://orcid.org/0000-0002-8320-5241</orcidid></search><sort><creationdate>20201118</creationdate><title>Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex</title><author>Martens, Louise ; Kroemer, Nils B ; Teckentrup, Vanessa ; Colic, Lejla ; Palomero-Gallagher, Nicola ; Li, Meng ; Walter, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-7dc34383aeccf5be0e6a2018db245d2aa6bb49e6dcf287abb26c8c983d8f50843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Brain Mapping</topic><topic>Cortex (cingulate)</topic><topic>Female</topic><topic>Functional anatomy</topic><topic>Functional magnetic resonance imaging</topic><topic>gamma-Aminobutyric Acid - genetics</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Glutamic Acid - genetics</topic><topic>Glutamic Acid - physiology</topic><topic>Gray Matter - diagnostic imaging</topic><topic>Gyrus Cinguli - diagnostic imaging</topic><topic>Gyrus Cinguli - growth & development</topic><topic>Gyrus Cinguli - physiology</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiology</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Neurotransmitter Agents - genetics</topic><topic>Neurotransmitter Agents - physiology</topic><topic>Neurotransmitters</topic><topic>Regression analysis</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martens, Louise</creatorcontrib><creatorcontrib>Kroemer, Nils B</creatorcontrib><creatorcontrib>Teckentrup, Vanessa</creatorcontrib><creatorcontrib>Colic, Lejla</creatorcontrib><creatorcontrib>Palomero-Gallagher, Nicola</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Walter, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martens, Louise</au><au>Kroemer, Nils B</au><au>Teckentrup, Vanessa</au><au>Colic, Lejla</au><au>Palomero-Gallagher, Nicola</au><au>Li, Meng</au><au>Walter, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2020-11-18</date><risdate>2020</risdate><volume>40</volume><issue>47</issue><spage>9028</spage><epage>9042</epage><pages>9028-9042</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as
and
of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area
predicted pgACC glutamate better than chance (
= 0.324) and explained more variance compared with area
using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information.
Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>33046545</pmid><doi>10.1523/JNEUROSCI.0897-20.2020</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9974-4557</orcidid><orcidid>https://orcid.org/0000-0003-4463-8578</orcidid><orcidid>https://orcid.org/0000-0001-7857-4483</orcidid><orcidid>https://orcid.org/0000-0002-9552-3781</orcidid><orcidid>https://orcid.org/0000-0002-8320-5241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2020-11, Vol.40 (47), p.9028-9042 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7673009 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adult Brain Brain architecture Brain Mapping Cortex (cingulate) Female Functional anatomy Functional magnetic resonance imaging gamma-Aminobutyric Acid - genetics gamma-Aminobutyric Acid - metabolism Glutamic Acid - genetics Glutamic Acid - physiology Gray Matter - diagnostic imaging Gyrus Cinguli - diagnostic imaging Gyrus Cinguli - growth & development Gyrus Cinguli - physiology Humans Learning algorithms Machine Learning Magnetic Resonance Imaging Magnetic Resonance Spectroscopy Male Medical imaging Mental disorders Nervous system Neural networks Neural Pathways - diagnostic imaging Neural Pathways - physiology Neuroimaging Neurosciences Neurotransmitter Agents - genetics Neurotransmitter Agents - physiology Neurotransmitters Regression analysis γ-Aminobutyric acid |
title | Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20Prediction%20of%20Glutamate%20from%20Whole-Brain%20Functional%20Connectivity%20of%20the%20Pregenual%20Anterior%20Cingulate%20Cortex&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Martens,%20Louise&rft.date=2020-11-18&rft.volume=40&rft.issue=47&rft.spage=9028&rft.epage=9042&rft.pages=9028-9042&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0897-20.2020&rft_dat=%3Cproquest_pubme%3E2450667530%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474304650&rft_id=info:pmid/33046545&rfr_iscdi=true |