Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex

Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2020-11, Vol.40 (47), p.9028-9042
Hauptverfasser: Martens, Louise, Kroemer, Nils B, Teckentrup, Vanessa, Colic, Lejla, Palomero-Gallagher, Nicola, Li, Meng, Walter, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9042
container_issue 47
container_start_page 9028
container_title The Journal of neuroscience
container_volume 40
creator Martens, Louise
Kroemer, Nils B
Teckentrup, Vanessa
Colic, Lejla
Palomero-Gallagher, Nicola
Li, Meng
Walter, Martin
description Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as and of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area predicted pgACC glutamate better than chance ( = 0.324) and explained more variance compared with area using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information. Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders.
doi_str_mv 10.1523/JNEUROSCI.0897-20.2020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7673009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450667530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-7dc34383aeccf5be0e6a2018db245d2aa6bb49e6dcf287abb26c8c983d8f50843</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EokvhK1SRuHDJMrEdO7kglaj_0IoioOJoOc5k15VjF8epKJ--SVtWwMmy3u89zcwj5KiAdVFS9v7T55Orr5ffmos1VLXMKawpUHhGVrNa55RD8ZysgErIBZf8gLwax2sAkFDIl-SAMeCi5OWKTJtgtLO_scu-ROysSTb4LPTZmZuSHnTCrI9hyH7sgsP8Y9TWZ6eTf8C0y5rgPc6fW5vuFlfa4ZKzRT_N6rFPGG2IWWP9dnJLWBNiwl-vyYteuxHfPL2H5Or05Htznm8uzy6a401uOKcpl51hnFVMozF92SKg0BSKqmspLzuqtWhbXqPoTE8rqduWClOZumJd1ZdQcXZIPjzm3kztgJ1Bn6J26ibaQcc7FbRV_yre7tQ23CopJAOo54B3TwEx_JxwTGqwo0HntMcwjWqeA4SQJYMZffsfeh2mOB9poSR_uPhCiUfKxDCOEfv9MAWopVm1b1YtzSoKaml2Nh79vcre9qdKdg_W6qMs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474304650</pqid></control><display><type>article</type><title>Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Martens, Louise ; Kroemer, Nils B ; Teckentrup, Vanessa ; Colic, Lejla ; Palomero-Gallagher, Nicola ; Li, Meng ; Walter, Martin</creator><creatorcontrib>Martens, Louise ; Kroemer, Nils B ; Teckentrup, Vanessa ; Colic, Lejla ; Palomero-Gallagher, Nicola ; Li, Meng ; Walter, Martin</creatorcontrib><description>Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as and of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area predicted pgACC glutamate better than chance ( = 0.324) and explained more variance compared with area using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information. Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0897-20.2020</identifier><identifier>PMID: 33046545</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Adult ; Brain ; Brain architecture ; Brain Mapping ; Cortex (cingulate) ; Female ; Functional anatomy ; Functional magnetic resonance imaging ; gamma-Aminobutyric Acid - genetics ; gamma-Aminobutyric Acid - metabolism ; Glutamic Acid - genetics ; Glutamic Acid - physiology ; Gray Matter - diagnostic imaging ; Gyrus Cinguli - diagnostic imaging ; Gyrus Cinguli - growth &amp; development ; Gyrus Cinguli - physiology ; Humans ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy ; Male ; Medical imaging ; Mental disorders ; Nervous system ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiology ; Neuroimaging ; Neurosciences ; Neurotransmitter Agents - genetics ; Neurotransmitter Agents - physiology ; Neurotransmitters ; Regression analysis ; γ-Aminobutyric acid</subject><ispartof>The Journal of neuroscience, 2020-11, Vol.40 (47), p.9028-9042</ispartof><rights>Copyright © 2020 the authors.</rights><rights>Copyright Society for Neuroscience Nov 18, 2020</rights><rights>Copyright © 2020 the authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-7dc34383aeccf5be0e6a2018db245d2aa6bb49e6dcf287abb26c8c983d8f50843</citedby><cites>FETCH-LOGICAL-c442t-7dc34383aeccf5be0e6a2018db245d2aa6bb49e6dcf287abb26c8c983d8f50843</cites><orcidid>0000-0002-9974-4557 ; 0000-0003-4463-8578 ; 0000-0001-7857-4483 ; 0000-0002-9552-3781 ; 0000-0002-8320-5241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673009/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673009/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33046545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martens, Louise</creatorcontrib><creatorcontrib>Kroemer, Nils B</creatorcontrib><creatorcontrib>Teckentrup, Vanessa</creatorcontrib><creatorcontrib>Colic, Lejla</creatorcontrib><creatorcontrib>Palomero-Gallagher, Nicola</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Walter, Martin</creatorcontrib><title>Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as and of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area predicted pgACC glutamate better than chance ( = 0.324) and explained more variance compared with area using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information. Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders.</description><subject>Adult</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Brain Mapping</subject><subject>Cortex (cingulate)</subject><subject>Female</subject><subject>Functional anatomy</subject><subject>Functional magnetic resonance imaging</subject><subject>gamma-Aminobutyric Acid - genetics</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Glutamic Acid - genetics</subject><subject>Glutamic Acid - physiology</subject><subject>Gray Matter - diagnostic imaging</subject><subject>Gyrus Cinguli - diagnostic imaging</subject><subject>Gyrus Cinguli - growth &amp; development</subject><subject>Gyrus Cinguli - physiology</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiology</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Neurotransmitter Agents - genetics</subject><subject>Neurotransmitter Agents - physiology</subject><subject>Neurotransmitters</subject><subject>Regression analysis</subject><subject>γ-Aminobutyric acid</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS0EokvhK1SRuHDJMrEdO7kglaj_0IoioOJoOc5k15VjF8epKJ--SVtWwMmy3u89zcwj5KiAdVFS9v7T55Orr5ffmos1VLXMKawpUHhGVrNa55RD8ZysgErIBZf8gLwax2sAkFDIl-SAMeCi5OWKTJtgtLO_scu-ROysSTb4LPTZmZuSHnTCrI9hyH7sgsP8Y9TWZ6eTf8C0y5rgPc6fW5vuFlfa4ZKzRT_N6rFPGG2IWWP9dnJLWBNiwl-vyYteuxHfPL2H5Or05Htznm8uzy6a401uOKcpl51hnFVMozF92SKg0BSKqmspLzuqtWhbXqPoTE8rqduWClOZumJd1ZdQcXZIPjzm3kztgJ1Bn6J26ibaQcc7FbRV_yre7tQ23CopJAOo54B3TwEx_JxwTGqwo0HntMcwjWqeA4SQJYMZffsfeh2mOB9poSR_uPhCiUfKxDCOEfv9MAWopVm1b1YtzSoKaml2Nh79vcre9qdKdg_W6qMs</recordid><startdate>20201118</startdate><enddate>20201118</enddate><creator>Martens, Louise</creator><creator>Kroemer, Nils B</creator><creator>Teckentrup, Vanessa</creator><creator>Colic, Lejla</creator><creator>Palomero-Gallagher, Nicola</creator><creator>Li, Meng</creator><creator>Walter, Martin</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9974-4557</orcidid><orcidid>https://orcid.org/0000-0003-4463-8578</orcidid><orcidid>https://orcid.org/0000-0001-7857-4483</orcidid><orcidid>https://orcid.org/0000-0002-9552-3781</orcidid><orcidid>https://orcid.org/0000-0002-8320-5241</orcidid></search><sort><creationdate>20201118</creationdate><title>Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex</title><author>Martens, Louise ; Kroemer, Nils B ; Teckentrup, Vanessa ; Colic, Lejla ; Palomero-Gallagher, Nicola ; Li, Meng ; Walter, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-7dc34383aeccf5be0e6a2018db245d2aa6bb49e6dcf287abb26c8c983d8f50843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Brain Mapping</topic><topic>Cortex (cingulate)</topic><topic>Female</topic><topic>Functional anatomy</topic><topic>Functional magnetic resonance imaging</topic><topic>gamma-Aminobutyric Acid - genetics</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Glutamic Acid - genetics</topic><topic>Glutamic Acid - physiology</topic><topic>Gray Matter - diagnostic imaging</topic><topic>Gyrus Cinguli - diagnostic imaging</topic><topic>Gyrus Cinguli - growth &amp; development</topic><topic>Gyrus Cinguli - physiology</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiology</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Neurotransmitter Agents - genetics</topic><topic>Neurotransmitter Agents - physiology</topic><topic>Neurotransmitters</topic><topic>Regression analysis</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martens, Louise</creatorcontrib><creatorcontrib>Kroemer, Nils B</creatorcontrib><creatorcontrib>Teckentrup, Vanessa</creatorcontrib><creatorcontrib>Colic, Lejla</creatorcontrib><creatorcontrib>Palomero-Gallagher, Nicola</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Walter, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martens, Louise</au><au>Kroemer, Nils B</au><au>Teckentrup, Vanessa</au><au>Colic, Lejla</au><au>Palomero-Gallagher, Nicola</au><au>Li, Meng</au><au>Walter, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2020-11-18</date><risdate>2020</risdate><volume>40</volume><issue>47</issue><spage>9028</spage><epage>9042</epage><pages>9028-9042</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as and of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area predicted pgACC glutamate better than chance ( = 0.324) and explained more variance compared with area using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information. Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>33046545</pmid><doi>10.1523/JNEUROSCI.0897-20.2020</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9974-4557</orcidid><orcidid>https://orcid.org/0000-0003-4463-8578</orcidid><orcidid>https://orcid.org/0000-0001-7857-4483</orcidid><orcidid>https://orcid.org/0000-0002-9552-3781</orcidid><orcidid>https://orcid.org/0000-0002-8320-5241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2020-11, Vol.40 (47), p.9028-9042
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7673009
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adult
Brain
Brain architecture
Brain Mapping
Cortex (cingulate)
Female
Functional anatomy
Functional magnetic resonance imaging
gamma-Aminobutyric Acid - genetics
gamma-Aminobutyric Acid - metabolism
Glutamic Acid - genetics
Glutamic Acid - physiology
Gray Matter - diagnostic imaging
Gyrus Cinguli - diagnostic imaging
Gyrus Cinguli - growth & development
Gyrus Cinguli - physiology
Humans
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
Male
Medical imaging
Mental disorders
Nervous system
Neural networks
Neural Pathways - diagnostic imaging
Neural Pathways - physiology
Neuroimaging
Neurosciences
Neurotransmitter Agents - genetics
Neurotransmitter Agents - physiology
Neurotransmitters
Regression analysis
γ-Aminobutyric acid
title Localized Prediction of Glutamate from Whole-Brain Functional Connectivity of the Pregenual Anterior Cingulate Cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20Prediction%20of%20Glutamate%20from%20Whole-Brain%20Functional%20Connectivity%20of%20the%20Pregenual%20Anterior%20Cingulate%20Cortex&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Martens,%20Louise&rft.date=2020-11-18&rft.volume=40&rft.issue=47&rft.spage=9028&rft.epage=9042&rft.pages=9028-9042&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0897-20.2020&rft_dat=%3Cproquest_pubme%3E2450667530%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474304650&rft_id=info:pmid/33046545&rfr_iscdi=true