Biochemical analysis of TOPBP1 oligomerization
•The ATR activator TOPBP1 oligomerizes via BRCT-BRCT domain interactions.•TOPBP1 oligomers can still bind heterologous binding partners.•The TOPBP1 AAD activates ATR as a tetramer. TOPBP1 is an important scaffold protein that helps orchestrate the cellular response to DNA damage. Although it has bee...
Gespeichert in:
Veröffentlicht in: | DNA repair 2020-12, Vol.96, p.102973-102973, Article 102973 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102973 |
---|---|
container_issue | |
container_start_page | 102973 |
container_title | DNA repair |
container_volume | 96 |
creator | Kim, Ahhyun Montales, Katrina Ruis, Kenna Senebandith, Holly Gasparyan, Hovik Cowan, Quinn Michael, W. Matthew |
description | •The ATR activator TOPBP1 oligomerizes via BRCT-BRCT domain interactions.•TOPBP1 oligomers can still bind heterologous binding partners.•The TOPBP1 AAD activates ATR as a tetramer.
TOPBP1 is an important scaffold protein that helps orchestrate the cellular response to DNA damage. Although it has been previously appreciated that TOPBP1 can form oligomers, how this occurs and the functional consequences for oligomerization were not yet known. Here, we use protein binding assays and other biochemical techniques to study how TOPBP1 self associates. TOPBP1 contains 9 copies of the BRCT domain, and we report that a subset of these BRCT domains interact with one another to drive oligomerization. An intact BRCT 2 domain is required for TOPBP1 oligomerization and we find that the BRCT1&2 region of TOPBP1 interacts with itself and with the BRCT4&5 pair. RAD9 and RHINO are two heterologous binding partners for TOPBP1’s BRCT 1&2 domains, and we show that binding of these partners does not come at the expense of TOPBP1 oligomerization. Furthermore, we show that a TOPBP1 oligomer can simultaneously interact with both RAD9 and RHINO. Lastly, we find that the oligomeric state necessary for TOPBP1 to activate the ATR protein kinase is likely to be a tetramer. |
doi_str_mv | 10.1016/j.dnarep.2020.102973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7670859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568786420302226</els_id><sourcerecordid>2447314756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-a8bbb791c792d142428f8dfee1e6b6bb60edf4924db31f62af84ac091f2dae103</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujEUT_gTF79AK23W67ezER4ldCAgc8N912CiW7W2wXE_z1QkDUi6eZzMf7zjwIXRM8IJjwu-XANCrAakAx3ZVoIdIT1CUZz_siz_jpMeesgy5iXGJMMsH5OeqktMhFmqVdNBg6rxdQO62qRDWq2kQXE2-T2WQ6nJLEV27uawjuU7XON5fozKoqwtUh9tDb0-Ns9NIfT55fRw_jvmY8bfsqL8tSFESLghrCKKO5zY0FIMBLXpYcg7GsoMyUKbGcKpszpXFBLDUKCE576H6vu1qXNRgNTRtUJVfB1SpspFdO_u00biHn_kMKLnCeFVuB24NA8O9riK2sXdRQVaoBv46SMiZSwkTGt6NsP6qDjzGAPdoQLHeo5VLuUcsdarlHvV27-X3icemb7c8PsAX14SDIqB00GowLoFtpvPvf4Qsi7ZJM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447314756</pqid></control><display><type>article</type><title>Biochemical analysis of TOPBP1 oligomerization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kim, Ahhyun ; Montales, Katrina ; Ruis, Kenna ; Senebandith, Holly ; Gasparyan, Hovik ; Cowan, Quinn ; Michael, W. Matthew</creator><creatorcontrib>Kim, Ahhyun ; Montales, Katrina ; Ruis, Kenna ; Senebandith, Holly ; Gasparyan, Hovik ; Cowan, Quinn ; Michael, W. Matthew</creatorcontrib><description>•The ATR activator TOPBP1 oligomerizes via BRCT-BRCT domain interactions.•TOPBP1 oligomers can still bind heterologous binding partners.•The TOPBP1 AAD activates ATR as a tetramer.
TOPBP1 is an important scaffold protein that helps orchestrate the cellular response to DNA damage. Although it has been previously appreciated that TOPBP1 can form oligomers, how this occurs and the functional consequences for oligomerization were not yet known. Here, we use protein binding assays and other biochemical techniques to study how TOPBP1 self associates. TOPBP1 contains 9 copies of the BRCT domain, and we report that a subset of these BRCT domains interact with one another to drive oligomerization. An intact BRCT 2 domain is required for TOPBP1 oligomerization and we find that the BRCT1&2 region of TOPBP1 interacts with itself and with the BRCT4&5 pair. RAD9 and RHINO are two heterologous binding partners for TOPBP1’s BRCT 1&2 domains, and we show that binding of these partners does not come at the expense of TOPBP1 oligomerization. Furthermore, we show that a TOPBP1 oligomer can simultaneously interact with both RAD9 and RHINO. Lastly, we find that the oligomeric state necessary for TOPBP1 to activate the ATR protein kinase is likely to be a tetramer.</description><identifier>ISSN: 1568-7864</identifier><identifier>EISSN: 1568-7856</identifier><identifier>DOI: 10.1016/j.dnarep.2020.102973</identifier><identifier>PMID: 32987353</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Ataxia Telangiectasia Mutated Proteins - metabolism ; ATR ; BRCT ; Cell Cycle Proteins - metabolism ; Checkpoint ; DNA Damage ; DNA-Binding Proteins - metabolism ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Scaffold ; Signal Transduction ; Xenopus - genetics ; Xenopus - metabolism</subject><ispartof>DNA repair, 2020-12, Vol.96, p.102973-102973, Article 102973</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-a8bbb791c792d142428f8dfee1e6b6bb60edf4924db31f62af84ac091f2dae103</citedby><cites>FETCH-LOGICAL-c463t-a8bbb791c792d142428f8dfee1e6b6bb60edf4924db31f62af84ac091f2dae103</cites><orcidid>0000-0002-8535-5796 ; 0000-0003-2220-6555 ; 0000-0002-8697-8178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dnarep.2020.102973$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32987353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ahhyun</creatorcontrib><creatorcontrib>Montales, Katrina</creatorcontrib><creatorcontrib>Ruis, Kenna</creatorcontrib><creatorcontrib>Senebandith, Holly</creatorcontrib><creatorcontrib>Gasparyan, Hovik</creatorcontrib><creatorcontrib>Cowan, Quinn</creatorcontrib><creatorcontrib>Michael, W. Matthew</creatorcontrib><title>Biochemical analysis of TOPBP1 oligomerization</title><title>DNA repair</title><addtitle>DNA Repair (Amst)</addtitle><description>•The ATR activator TOPBP1 oligomerizes via BRCT-BRCT domain interactions.•TOPBP1 oligomers can still bind heterologous binding partners.•The TOPBP1 AAD activates ATR as a tetramer.
TOPBP1 is an important scaffold protein that helps orchestrate the cellular response to DNA damage. Although it has been previously appreciated that TOPBP1 can form oligomers, how this occurs and the functional consequences for oligomerization were not yet known. Here, we use protein binding assays and other biochemical techniques to study how TOPBP1 self associates. TOPBP1 contains 9 copies of the BRCT domain, and we report that a subset of these BRCT domains interact with one another to drive oligomerization. An intact BRCT 2 domain is required for TOPBP1 oligomerization and we find that the BRCT1&2 region of TOPBP1 interacts with itself and with the BRCT4&5 pair. RAD9 and RHINO are two heterologous binding partners for TOPBP1’s BRCT 1&2 domains, and we show that binding of these partners does not come at the expense of TOPBP1 oligomerization. Furthermore, we show that a TOPBP1 oligomer can simultaneously interact with both RAD9 and RHINO. Lastly, we find that the oligomeric state necessary for TOPBP1 to activate the ATR protein kinase is likely to be a tetramer.</description><subject>Animals</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>ATR</subject><subject>BRCT</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Checkpoint</subject><subject>DNA Damage</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Multimerization</subject><subject>Scaffold</subject><subject>Signal Transduction</subject><subject>Xenopus - genetics</subject><subject>Xenopus - metabolism</subject><issn>1568-7864</issn><issn>1568-7856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PAjEQhhujEUT_gTF79AK23W67ezER4ldCAgc8N912CiW7W2wXE_z1QkDUi6eZzMf7zjwIXRM8IJjwu-XANCrAakAx3ZVoIdIT1CUZz_siz_jpMeesgy5iXGJMMsH5OeqktMhFmqVdNBg6rxdQO62qRDWq2kQXE2-T2WQ6nJLEV27uawjuU7XON5fozKoqwtUh9tDb0-Ns9NIfT55fRw_jvmY8bfsqL8tSFESLghrCKKO5zY0FIMBLXpYcg7GsoMyUKbGcKpszpXFBLDUKCE576H6vu1qXNRgNTRtUJVfB1SpspFdO_u00biHn_kMKLnCeFVuB24NA8O9riK2sXdRQVaoBv46SMiZSwkTGt6NsP6qDjzGAPdoQLHeo5VLuUcsdarlHvV27-X3icemb7c8PsAX14SDIqB00GowLoFtpvPvf4Qsi7ZJM</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Kim, Ahhyun</creator><creator>Montales, Katrina</creator><creator>Ruis, Kenna</creator><creator>Senebandith, Holly</creator><creator>Gasparyan, Hovik</creator><creator>Cowan, Quinn</creator><creator>Michael, W. Matthew</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8535-5796</orcidid><orcidid>https://orcid.org/0000-0003-2220-6555</orcidid><orcidid>https://orcid.org/0000-0002-8697-8178</orcidid></search><sort><creationdate>20201201</creationdate><title>Biochemical analysis of TOPBP1 oligomerization</title><author>Kim, Ahhyun ; Montales, Katrina ; Ruis, Kenna ; Senebandith, Holly ; Gasparyan, Hovik ; Cowan, Quinn ; Michael, W. Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-a8bbb791c792d142428f8dfee1e6b6bb60edf4924db31f62af84ac091f2dae103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>ATR</topic><topic>BRCT</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Checkpoint</topic><topic>DNA Damage</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Multimerization</topic><topic>Scaffold</topic><topic>Signal Transduction</topic><topic>Xenopus - genetics</topic><topic>Xenopus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ahhyun</creatorcontrib><creatorcontrib>Montales, Katrina</creatorcontrib><creatorcontrib>Ruis, Kenna</creatorcontrib><creatorcontrib>Senebandith, Holly</creatorcontrib><creatorcontrib>Gasparyan, Hovik</creatorcontrib><creatorcontrib>Cowan, Quinn</creatorcontrib><creatorcontrib>Michael, W. Matthew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>DNA repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ahhyun</au><au>Montales, Katrina</au><au>Ruis, Kenna</au><au>Senebandith, Holly</au><au>Gasparyan, Hovik</au><au>Cowan, Quinn</au><au>Michael, W. Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical analysis of TOPBP1 oligomerization</atitle><jtitle>DNA repair</jtitle><addtitle>DNA Repair (Amst)</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>96</volume><spage>102973</spage><epage>102973</epage><pages>102973-102973</pages><artnum>102973</artnum><issn>1568-7864</issn><eissn>1568-7856</eissn><abstract>•The ATR activator TOPBP1 oligomerizes via BRCT-BRCT domain interactions.•TOPBP1 oligomers can still bind heterologous binding partners.•The TOPBP1 AAD activates ATR as a tetramer.
TOPBP1 is an important scaffold protein that helps orchestrate the cellular response to DNA damage. Although it has been previously appreciated that TOPBP1 can form oligomers, how this occurs and the functional consequences for oligomerization were not yet known. Here, we use protein binding assays and other biochemical techniques to study how TOPBP1 self associates. TOPBP1 contains 9 copies of the BRCT domain, and we report that a subset of these BRCT domains interact with one another to drive oligomerization. An intact BRCT 2 domain is required for TOPBP1 oligomerization and we find that the BRCT1&2 region of TOPBP1 interacts with itself and with the BRCT4&5 pair. RAD9 and RHINO are two heterologous binding partners for TOPBP1’s BRCT 1&2 domains, and we show that binding of these partners does not come at the expense of TOPBP1 oligomerization. Furthermore, we show that a TOPBP1 oligomer can simultaneously interact with both RAD9 and RHINO. Lastly, we find that the oligomeric state necessary for TOPBP1 to activate the ATR protein kinase is likely to be a tetramer.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32987353</pmid><doi>10.1016/j.dnarep.2020.102973</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8535-5796</orcidid><orcidid>https://orcid.org/0000-0003-2220-6555</orcidid><orcidid>https://orcid.org/0000-0002-8697-8178</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-7864 |
ispartof | DNA repair, 2020-12, Vol.96, p.102973-102973, Article 102973 |
issn | 1568-7864 1568-7856 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7670859 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Ataxia Telangiectasia Mutated Proteins - metabolism ATR BRCT Cell Cycle Proteins - metabolism Checkpoint DNA Damage DNA-Binding Proteins - metabolism Protein Interaction Domains and Motifs Protein Multimerization Scaffold Signal Transduction Xenopus - genetics Xenopus - metabolism |
title | Biochemical analysis of TOPBP1 oligomerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20analysis%20of%20TOPBP1%20oligomerization&rft.jtitle=DNA%20repair&rft.au=Kim,%20Ahhyun&rft.date=2020-12-01&rft.volume=96&rft.spage=102973&rft.epage=102973&rft.pages=102973-102973&rft.artnum=102973&rft.issn=1568-7864&rft.eissn=1568-7856&rft_id=info:doi/10.1016/j.dnarep.2020.102973&rft_dat=%3Cproquest_pubme%3E2447314756%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447314756&rft_id=info:pmid/32987353&rft_els_id=S1568786420302226&rfr_iscdi=true |