Biochemical analysis of TOPBP1 oligomerization

•The ATR activator TOPBP1 oligomerizes via BRCT-BRCT domain interactions.•TOPBP1 oligomers can still bind heterologous binding partners.•The TOPBP1 AAD activates ATR as a tetramer. TOPBP1 is an important scaffold protein that helps orchestrate the cellular response to DNA damage. Although it has bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA repair 2020-12, Vol.96, p.102973-102973, Article 102973
Hauptverfasser: Kim, Ahhyun, Montales, Katrina, Ruis, Kenna, Senebandith, Holly, Gasparyan, Hovik, Cowan, Quinn, Michael, W. Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102973
container_issue
container_start_page 102973
container_title DNA repair
container_volume 96
creator Kim, Ahhyun
Montales, Katrina
Ruis, Kenna
Senebandith, Holly
Gasparyan, Hovik
Cowan, Quinn
Michael, W. Matthew
description •The ATR activator TOPBP1 oligomerizes via BRCT-BRCT domain interactions.•TOPBP1 oligomers can still bind heterologous binding partners.•The TOPBP1 AAD activates ATR as a tetramer. TOPBP1 is an important scaffold protein that helps orchestrate the cellular response to DNA damage. Although it has been previously appreciated that TOPBP1 can form oligomers, how this occurs and the functional consequences for oligomerization were not yet known. Here, we use protein binding assays and other biochemical techniques to study how TOPBP1 self associates. TOPBP1 contains 9 copies of the BRCT domain, and we report that a subset of these BRCT domains interact with one another to drive oligomerization. An intact BRCT 2 domain is required for TOPBP1 oligomerization and we find that the BRCT1&2 region of TOPBP1 interacts with itself and with the BRCT4&5 pair. RAD9 and RHINO are two heterologous binding partners for TOPBP1’s BRCT 1&2 domains, and we show that binding of these partners does not come at the expense of TOPBP1 oligomerization. Furthermore, we show that a TOPBP1 oligomer can simultaneously interact with both RAD9 and RHINO. Lastly, we find that the oligomeric state necessary for TOPBP1 to activate the ATR protein kinase is likely to be a tetramer.
doi_str_mv 10.1016/j.dnarep.2020.102973
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7670859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568786420302226</els_id><sourcerecordid>2447314756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-a8bbb791c792d142428f8dfee1e6b6bb60edf4924db31f62af84ac091f2dae103</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujEUT_gTF79AK23W67ezER4ldCAgc8N912CiW7W2wXE_z1QkDUi6eZzMf7zjwIXRM8IJjwu-XANCrAakAx3ZVoIdIT1CUZz_siz_jpMeesgy5iXGJMMsH5OeqktMhFmqVdNBg6rxdQO62qRDWq2kQXE2-T2WQ6nJLEV27uawjuU7XON5fozKoqwtUh9tDb0-Ns9NIfT55fRw_jvmY8bfsqL8tSFESLghrCKKO5zY0FIMBLXpYcg7GsoMyUKbGcKpszpXFBLDUKCE576H6vu1qXNRgNTRtUJVfB1SpspFdO_u00biHn_kMKLnCeFVuB24NA8O9riK2sXdRQVaoBv46SMiZSwkTGt6NsP6qDjzGAPdoQLHeo5VLuUcsdarlHvV27-X3icemb7c8PsAX14SDIqB00GowLoFtpvPvf4Qsi7ZJM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447314756</pqid></control><display><type>article</type><title>Biochemical analysis of TOPBP1 oligomerization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kim, Ahhyun ; Montales, Katrina ; Ruis, Kenna ; Senebandith, Holly ; Gasparyan, Hovik ; Cowan, Quinn ; Michael, W. Matthew</creator><creatorcontrib>Kim, Ahhyun ; Montales, Katrina ; Ruis, Kenna ; Senebandith, Holly ; Gasparyan, Hovik ; Cowan, Quinn ; Michael, W. Matthew</creatorcontrib><description>•The ATR activator TOPBP1 oligomerizes via BRCT-BRCT domain interactions.•TOPBP1 oligomers can still bind heterologous binding partners.•The TOPBP1 AAD activates ATR as a tetramer. TOPBP1 is an important scaffold protein that helps orchestrate the cellular response to DNA damage. Although it has been previously appreciated that TOPBP1 can form oligomers, how this occurs and the functional consequences for oligomerization were not yet known. Here, we use protein binding assays and other biochemical techniques to study how TOPBP1 self associates. TOPBP1 contains 9 copies of the BRCT domain, and we report that a subset of these BRCT domains interact with one another to drive oligomerization. An intact BRCT 2 domain is required for TOPBP1 oligomerization and we find that the BRCT1&amp;2 region of TOPBP1 interacts with itself and with the BRCT4&amp;5 pair. RAD9 and RHINO are two heterologous binding partners for TOPBP1’s BRCT 1&amp;2 domains, and we show that binding of these partners does not come at the expense of TOPBP1 oligomerization. Furthermore, we show that a TOPBP1 oligomer can simultaneously interact with both RAD9 and RHINO. Lastly, we find that the oligomeric state necessary for TOPBP1 to activate the ATR protein kinase is likely to be a tetramer.</description><identifier>ISSN: 1568-7864</identifier><identifier>EISSN: 1568-7856</identifier><identifier>DOI: 10.1016/j.dnarep.2020.102973</identifier><identifier>PMID: 32987353</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Ataxia Telangiectasia Mutated Proteins - metabolism ; ATR ; BRCT ; Cell Cycle Proteins - metabolism ; Checkpoint ; DNA Damage ; DNA-Binding Proteins - metabolism ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Scaffold ; Signal Transduction ; Xenopus - genetics ; Xenopus - metabolism</subject><ispartof>DNA repair, 2020-12, Vol.96, p.102973-102973, Article 102973</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-a8bbb791c792d142428f8dfee1e6b6bb60edf4924db31f62af84ac091f2dae103</citedby><cites>FETCH-LOGICAL-c463t-a8bbb791c792d142428f8dfee1e6b6bb60edf4924db31f62af84ac091f2dae103</cites><orcidid>0000-0002-8535-5796 ; 0000-0003-2220-6555 ; 0000-0002-8697-8178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dnarep.2020.102973$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32987353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ahhyun</creatorcontrib><creatorcontrib>Montales, Katrina</creatorcontrib><creatorcontrib>Ruis, Kenna</creatorcontrib><creatorcontrib>Senebandith, Holly</creatorcontrib><creatorcontrib>Gasparyan, Hovik</creatorcontrib><creatorcontrib>Cowan, Quinn</creatorcontrib><creatorcontrib>Michael, W. Matthew</creatorcontrib><title>Biochemical analysis of TOPBP1 oligomerization</title><title>DNA repair</title><addtitle>DNA Repair (Amst)</addtitle><description>•The ATR activator TOPBP1 oligomerizes via BRCT-BRCT domain interactions.•TOPBP1 oligomers can still bind heterologous binding partners.•The TOPBP1 AAD activates ATR as a tetramer. TOPBP1 is an important scaffold protein that helps orchestrate the cellular response to DNA damage. Although it has been previously appreciated that TOPBP1 can form oligomers, how this occurs and the functional consequences for oligomerization were not yet known. Here, we use protein binding assays and other biochemical techniques to study how TOPBP1 self associates. TOPBP1 contains 9 copies of the BRCT domain, and we report that a subset of these BRCT domains interact with one another to drive oligomerization. An intact BRCT 2 domain is required for TOPBP1 oligomerization and we find that the BRCT1&amp;2 region of TOPBP1 interacts with itself and with the BRCT4&amp;5 pair. RAD9 and RHINO are two heterologous binding partners for TOPBP1’s BRCT 1&amp;2 domains, and we show that binding of these partners does not come at the expense of TOPBP1 oligomerization. Furthermore, we show that a TOPBP1 oligomer can simultaneously interact with both RAD9 and RHINO. Lastly, we find that the oligomeric state necessary for TOPBP1 to activate the ATR protein kinase is likely to be a tetramer.</description><subject>Animals</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>ATR</subject><subject>BRCT</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Checkpoint</subject><subject>DNA Damage</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Multimerization</subject><subject>Scaffold</subject><subject>Signal Transduction</subject><subject>Xenopus - genetics</subject><subject>Xenopus - metabolism</subject><issn>1568-7864</issn><issn>1568-7856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PAjEQhhujEUT_gTF79AK23W67ezER4ldCAgc8N912CiW7W2wXE_z1QkDUi6eZzMf7zjwIXRM8IJjwu-XANCrAakAx3ZVoIdIT1CUZz_siz_jpMeesgy5iXGJMMsH5OeqktMhFmqVdNBg6rxdQO62qRDWq2kQXE2-T2WQ6nJLEV27uawjuU7XON5fozKoqwtUh9tDb0-Ns9NIfT55fRw_jvmY8bfsqL8tSFESLghrCKKO5zY0FIMBLXpYcg7GsoMyUKbGcKpszpXFBLDUKCE576H6vu1qXNRgNTRtUJVfB1SpspFdO_u00biHn_kMKLnCeFVuB24NA8O9riK2sXdRQVaoBv46SMiZSwkTGt6NsP6qDjzGAPdoQLHeo5VLuUcsdarlHvV27-X3icemb7c8PsAX14SDIqB00GowLoFtpvPvf4Qsi7ZJM</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Kim, Ahhyun</creator><creator>Montales, Katrina</creator><creator>Ruis, Kenna</creator><creator>Senebandith, Holly</creator><creator>Gasparyan, Hovik</creator><creator>Cowan, Quinn</creator><creator>Michael, W. Matthew</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8535-5796</orcidid><orcidid>https://orcid.org/0000-0003-2220-6555</orcidid><orcidid>https://orcid.org/0000-0002-8697-8178</orcidid></search><sort><creationdate>20201201</creationdate><title>Biochemical analysis of TOPBP1 oligomerization</title><author>Kim, Ahhyun ; Montales, Katrina ; Ruis, Kenna ; Senebandith, Holly ; Gasparyan, Hovik ; Cowan, Quinn ; Michael, W. Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-a8bbb791c792d142428f8dfee1e6b6bb60edf4924db31f62af84ac091f2dae103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>ATR</topic><topic>BRCT</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Checkpoint</topic><topic>DNA Damage</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Multimerization</topic><topic>Scaffold</topic><topic>Signal Transduction</topic><topic>Xenopus - genetics</topic><topic>Xenopus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ahhyun</creatorcontrib><creatorcontrib>Montales, Katrina</creatorcontrib><creatorcontrib>Ruis, Kenna</creatorcontrib><creatorcontrib>Senebandith, Holly</creatorcontrib><creatorcontrib>Gasparyan, Hovik</creatorcontrib><creatorcontrib>Cowan, Quinn</creatorcontrib><creatorcontrib>Michael, W. Matthew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>DNA repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ahhyun</au><au>Montales, Katrina</au><au>Ruis, Kenna</au><au>Senebandith, Holly</au><au>Gasparyan, Hovik</au><au>Cowan, Quinn</au><au>Michael, W. Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical analysis of TOPBP1 oligomerization</atitle><jtitle>DNA repair</jtitle><addtitle>DNA Repair (Amst)</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>96</volume><spage>102973</spage><epage>102973</epage><pages>102973-102973</pages><artnum>102973</artnum><issn>1568-7864</issn><eissn>1568-7856</eissn><abstract>•The ATR activator TOPBP1 oligomerizes via BRCT-BRCT domain interactions.•TOPBP1 oligomers can still bind heterologous binding partners.•The TOPBP1 AAD activates ATR as a tetramer. TOPBP1 is an important scaffold protein that helps orchestrate the cellular response to DNA damage. Although it has been previously appreciated that TOPBP1 can form oligomers, how this occurs and the functional consequences for oligomerization were not yet known. Here, we use protein binding assays and other biochemical techniques to study how TOPBP1 self associates. TOPBP1 contains 9 copies of the BRCT domain, and we report that a subset of these BRCT domains interact with one another to drive oligomerization. An intact BRCT 2 domain is required for TOPBP1 oligomerization and we find that the BRCT1&amp;2 region of TOPBP1 interacts with itself and with the BRCT4&amp;5 pair. RAD9 and RHINO are two heterologous binding partners for TOPBP1’s BRCT 1&amp;2 domains, and we show that binding of these partners does not come at the expense of TOPBP1 oligomerization. Furthermore, we show that a TOPBP1 oligomer can simultaneously interact with both RAD9 and RHINO. Lastly, we find that the oligomeric state necessary for TOPBP1 to activate the ATR protein kinase is likely to be a tetramer.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32987353</pmid><doi>10.1016/j.dnarep.2020.102973</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8535-5796</orcidid><orcidid>https://orcid.org/0000-0003-2220-6555</orcidid><orcidid>https://orcid.org/0000-0002-8697-8178</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1568-7864
ispartof DNA repair, 2020-12, Vol.96, p.102973-102973, Article 102973
issn 1568-7864
1568-7856
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7670859
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Ataxia Telangiectasia Mutated Proteins - metabolism
ATR
BRCT
Cell Cycle Proteins - metabolism
Checkpoint
DNA Damage
DNA-Binding Proteins - metabolism
Protein Interaction Domains and Motifs
Protein Multimerization
Scaffold
Signal Transduction
Xenopus - genetics
Xenopus - metabolism
title Biochemical analysis of TOPBP1 oligomerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20analysis%20of%20TOPBP1%20oligomerization&rft.jtitle=DNA%20repair&rft.au=Kim,%20Ahhyun&rft.date=2020-12-01&rft.volume=96&rft.spage=102973&rft.epage=102973&rft.pages=102973-102973&rft.artnum=102973&rft.issn=1568-7864&rft.eissn=1568-7856&rft_id=info:doi/10.1016/j.dnarep.2020.102973&rft_dat=%3Cproquest_pubme%3E2447314756%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447314756&rft_id=info:pmid/32987353&rft_els_id=S1568786420302226&rfr_iscdi=true