A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis

Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2020-03, Vol.23 (3), p.386-397
Hauptverfasser: Rodriguez, Caitlin M., Wright, Shannon E., Kearse, Michael G., Haenfler, Jill M., Flores, Brittany N., Liu, Yu, Ifrim, Marius F., Glineburg, Mary R., Krans, Amy, Jafar-Nejad, Paymaan, Sutton, Michael A., Bassell, Gary J., Parent, Jack M., Rigo, Frank, Barmada, Sami J., Todd, Peter K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 3
container_start_page 386
container_title Nature neuroscience
container_volume 23
creator Rodriguez, Caitlin M.
Wright, Shannon E.
Kearse, Michael G.
Haenfler, Jill M.
Flores, Brittany N.
Liu, Yu
Ifrim, Marius F.
Glineburg, Mary R.
Krans, Amy
Jafar-Nejad, Paymaan
Sutton, Michael A.
Bassell, Gary J.
Parent, Jack M.
Rigo, Frank
Barmada, Sami J.
Todd, Peter K.
description Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders. Rodriguez et al. define a native role for RAN translation and CGG repeats in regulating mGluR-dependent fragile X protein (FMRP) synthesis. RAN-blocking antisense oligonucleotides increase FMRP and improve survival of neurons from patients with repeat expansions.
doi_str_mv 10.1038/s41593-020-0590-1
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618258094</galeid><sourcerecordid>A618258094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-4c4aa88ca91b80e53d706f8f026fa3a76563ddf022641829b647dc73d180b56d3</originalsourceid><addsrcrecordid>eNp1kk1rVDEUhoMotlZ_gBsJuNHFrfm4-doIw6BjoShUBXchk5vcptxJxiS32H9vxqmtI0oWOcl5zpucwwvAc4xOMaLyTekxU7RDBHWIKdThB-AYs553WBD-sMVIiY4Txo_Ak1KuEEKCSfUYHFGCOFeSHQO9gNHUcO2gn6OtIUXoU4YXi4-wZhPLZH7dmTjA5WoFs9s6UwsMsYXjvMvGEfpsxjA5-A1uc6quJctNrJeuhPIUPPJmKu7Z7X4Cvr5_92X5oTv_tDpbLs47y6moXW97Y6S0RuG1RI7RQSDupUeEe0ON4IzTYWhHwnssiVrzXgxW0AFLtGZ8oCfg7V53O683brAutu9PepvDxuQbnUzQh5kYLvWYrrXgXFKFmsCrW4Gcvs-uVL0JxbppMtGluWhCmeiZ4Fg09OVf6FWac2ztNUqwXiglyT01msnpEH1q79qdqF7w1gOTSPWNOv0H1dbgNsGm6Hwb7GHB64OCxlT3o45mLkWffb44ZPGetTmVkp2_mwdGeucgvXeQbg7SOwdp3Gpe_DnIu4rflmkA2QOlpeLo8n33_1f9CRNkzrE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375479982</pqid></control><display><type>article</type><title>A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Rodriguez, Caitlin M. ; Wright, Shannon E. ; Kearse, Michael G. ; Haenfler, Jill M. ; Flores, Brittany N. ; Liu, Yu ; Ifrim, Marius F. ; Glineburg, Mary R. ; Krans, Amy ; Jafar-Nejad, Paymaan ; Sutton, Michael A. ; Bassell, Gary J. ; Parent, Jack M. ; Rigo, Frank ; Barmada, Sami J. ; Todd, Peter K.</creator><creatorcontrib>Rodriguez, Caitlin M. ; Wright, Shannon E. ; Kearse, Michael G. ; Haenfler, Jill M. ; Flores, Brittany N. ; Liu, Yu ; Ifrim, Marius F. ; Glineburg, Mary R. ; Krans, Amy ; Jafar-Nejad, Paymaan ; Sutton, Michael A. ; Bassell, Gary J. ; Parent, Jack M. ; Rigo, Frank ; Barmada, Sami J. ; Todd, Peter K.</creatorcontrib><description>Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders. Rodriguez et al. define a native role for RAN translation and CGG repeats in regulating mGluR-dependent fragile X protein (FMRP) synthesis. RAN-blocking antisense oligonucleotides increase FMRP and improve survival of neurons from patients with repeat expansions.</description><identifier>ISSN: 1097-6256</identifier><identifier>ISSN: 1546-1726</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-020-0590-1</identifier><identifier>PMID: 32066985</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/574 ; 631/378/1689/2608 ; 631/378/1689/364 ; 631/378/2583 ; 631/45/500 ; Animal Genetics and Genomics ; Animals ; Antisense oligonucleotides ; Ataxia ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Cell Line ; Cell Survival - genetics ; Control ; DNA Repeat Expansion - genetics ; Female ; FMR1 protein ; Fragile X Mental Retardation Protein - biosynthesis ; Fragile X Mental Retardation Protein - genetics ; Fragile X syndrome ; Fragile X Syndrome - genetics ; Genetic aspects ; Genetic translation ; Glutamic acid receptors (metabotropic) ; Induced Pluripotent Stem Cells ; Intellectual disabilities ; Male ; Mental illness ; Mice ; Neurobiology ; Neurodegeneration ; Neurons ; Neurons - metabolism ; Neurosciences ; Oligonucleotides ; Oligonucleotides, Antisense - pharmacology ; Physiological aspects ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Rats ; Rats, Long-Evans ; Rats, Sprague-Dawley ; Receptor, Metabotropic Glutamate 5 - biosynthesis ; Receptor, Metabotropic Glutamate 5 - genetics ; Receptors ; RNA ; Survival ; Synthesis ; Toxicity ; Translation ; Tremor ; Trinucleotide Repeats - genetics</subject><ispartof>Nature neuroscience, 2020-03, Vol.23 (3), p.386-397</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-4c4aa88ca91b80e53d706f8f026fa3a76563ddf022641829b647dc73d180b56d3</citedby><cites>FETCH-LOGICAL-c637t-4c4aa88ca91b80e53d706f8f026fa3a76563ddf022641829b647dc73d180b56d3</cites><orcidid>0000-0002-9604-968X ; 0000-0003-4781-6376 ; 0000-0003-2622-0127 ; 0000-0002-2972-1528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-020-0590-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-020-0590-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32066985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodriguez, Caitlin M.</creatorcontrib><creatorcontrib>Wright, Shannon E.</creatorcontrib><creatorcontrib>Kearse, Michael G.</creatorcontrib><creatorcontrib>Haenfler, Jill M.</creatorcontrib><creatorcontrib>Flores, Brittany N.</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Ifrim, Marius F.</creatorcontrib><creatorcontrib>Glineburg, Mary R.</creatorcontrib><creatorcontrib>Krans, Amy</creatorcontrib><creatorcontrib>Jafar-Nejad, Paymaan</creatorcontrib><creatorcontrib>Sutton, Michael A.</creatorcontrib><creatorcontrib>Bassell, Gary J.</creatorcontrib><creatorcontrib>Parent, Jack M.</creatorcontrib><creatorcontrib>Rigo, Frank</creatorcontrib><creatorcontrib>Barmada, Sami J.</creatorcontrib><creatorcontrib>Todd, Peter K.</creatorcontrib><title>A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders. Rodriguez et al. define a native role for RAN translation and CGG repeats in regulating mGluR-dependent fragile X protein (FMRP) synthesis. RAN-blocking antisense oligonucleotides increase FMRP and improve survival of neurons from patients with repeat expansions.</description><subject>631/337/574</subject><subject>631/378/1689/2608</subject><subject>631/378/1689/364</subject><subject>631/378/2583</subject><subject>631/45/500</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Antisense oligonucleotides</subject><subject>Ataxia</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Line</subject><subject>Cell Survival - genetics</subject><subject>Control</subject><subject>DNA Repeat Expansion - genetics</subject><subject>Female</subject><subject>FMR1 protein</subject><subject>Fragile X Mental Retardation Protein - biosynthesis</subject><subject>Fragile X Mental Retardation Protein - genetics</subject><subject>Fragile X syndrome</subject><subject>Fragile X Syndrome - genetics</subject><subject>Genetic aspects</subject><subject>Genetic translation</subject><subject>Glutamic acid receptors (metabotropic)</subject><subject>Induced Pluripotent Stem Cells</subject><subject>Intellectual disabilities</subject><subject>Male</subject><subject>Mental illness</subject><subject>Mice</subject><subject>Neurobiology</subject><subject>Neurodegeneration</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Oligonucleotides</subject><subject>Oligonucleotides, Antisense - pharmacology</subject><subject>Physiological aspects</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, Metabotropic Glutamate 5 - biosynthesis</subject><subject>Receptor, Metabotropic Glutamate 5 - genetics</subject><subject>Receptors</subject><subject>RNA</subject><subject>Survival</subject><subject>Synthesis</subject><subject>Toxicity</subject><subject>Translation</subject><subject>Tremor</subject><subject>Trinucleotide Repeats - genetics</subject><issn>1097-6256</issn><issn>1546-1726</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kk1rVDEUhoMotlZ_gBsJuNHFrfm4-doIw6BjoShUBXchk5vcptxJxiS32H9vxqmtI0oWOcl5zpucwwvAc4xOMaLyTekxU7RDBHWIKdThB-AYs553WBD-sMVIiY4Txo_Ak1KuEEKCSfUYHFGCOFeSHQO9gNHUcO2gn6OtIUXoU4YXi4-wZhPLZH7dmTjA5WoFs9s6UwsMsYXjvMvGEfpsxjA5-A1uc6quJctNrJeuhPIUPPJmKu7Z7X4Cvr5_92X5oTv_tDpbLs47y6moXW97Y6S0RuG1RI7RQSDupUeEe0ON4IzTYWhHwnssiVrzXgxW0AFLtGZ8oCfg7V53O683brAutu9PepvDxuQbnUzQh5kYLvWYrrXgXFKFmsCrW4Gcvs-uVL0JxbppMtGluWhCmeiZ4Fg09OVf6FWac2ztNUqwXiglyT01msnpEH1q79qdqF7w1gOTSPWNOv0H1dbgNsGm6Hwb7GHB64OCxlT3o45mLkWffb44ZPGetTmVkp2_mwdGeucgvXeQbg7SOwdp3Gpe_DnIu4rflmkA2QOlpeLo8n33_1f9CRNkzrE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Rodriguez, Caitlin M.</creator><creator>Wright, Shannon E.</creator><creator>Kearse, Michael G.</creator><creator>Haenfler, Jill M.</creator><creator>Flores, Brittany N.</creator><creator>Liu, Yu</creator><creator>Ifrim, Marius F.</creator><creator>Glineburg, Mary R.</creator><creator>Krans, Amy</creator><creator>Jafar-Nejad, Paymaan</creator><creator>Sutton, Michael A.</creator><creator>Bassell, Gary J.</creator><creator>Parent, Jack M.</creator><creator>Rigo, Frank</creator><creator>Barmada, Sami J.</creator><creator>Todd, Peter K.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9604-968X</orcidid><orcidid>https://orcid.org/0000-0003-4781-6376</orcidid><orcidid>https://orcid.org/0000-0003-2622-0127</orcidid><orcidid>https://orcid.org/0000-0002-2972-1528</orcidid></search><sort><creationdate>20200301</creationdate><title>A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis</title><author>Rodriguez, Caitlin M. ; Wright, Shannon E. ; Kearse, Michael G. ; Haenfler, Jill M. ; Flores, Brittany N. ; Liu, Yu ; Ifrim, Marius F. ; Glineburg, Mary R. ; Krans, Amy ; Jafar-Nejad, Paymaan ; Sutton, Michael A. ; Bassell, Gary J. ; Parent, Jack M. ; Rigo, Frank ; Barmada, Sami J. ; Todd, Peter K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-4c4aa88ca91b80e53d706f8f026fa3a76563ddf022641829b647dc73d180b56d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/337/574</topic><topic>631/378/1689/2608</topic><topic>631/378/1689/364</topic><topic>631/378/2583</topic><topic>631/45/500</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Antisense oligonucleotides</topic><topic>Ataxia</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Line</topic><topic>Cell Survival - genetics</topic><topic>Control</topic><topic>DNA Repeat Expansion - genetics</topic><topic>Female</topic><topic>FMR1 protein</topic><topic>Fragile X Mental Retardation Protein - biosynthesis</topic><topic>Fragile X Mental Retardation Protein - genetics</topic><topic>Fragile X syndrome</topic><topic>Fragile X Syndrome - genetics</topic><topic>Genetic aspects</topic><topic>Genetic translation</topic><topic>Glutamic acid receptors (metabotropic)</topic><topic>Induced Pluripotent Stem Cells</topic><topic>Intellectual disabilities</topic><topic>Male</topic><topic>Mental illness</topic><topic>Mice</topic><topic>Neurobiology</topic><topic>Neurodegeneration</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Oligonucleotides</topic><topic>Oligonucleotides, Antisense - pharmacology</topic><topic>Physiological aspects</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, Metabotropic Glutamate 5 - biosynthesis</topic><topic>Receptor, Metabotropic Glutamate 5 - genetics</topic><topic>Receptors</topic><topic>RNA</topic><topic>Survival</topic><topic>Synthesis</topic><topic>Toxicity</topic><topic>Translation</topic><topic>Tremor</topic><topic>Trinucleotide Repeats - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Caitlin M.</creatorcontrib><creatorcontrib>Wright, Shannon E.</creatorcontrib><creatorcontrib>Kearse, Michael G.</creatorcontrib><creatorcontrib>Haenfler, Jill M.</creatorcontrib><creatorcontrib>Flores, Brittany N.</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Ifrim, Marius F.</creatorcontrib><creatorcontrib>Glineburg, Mary R.</creatorcontrib><creatorcontrib>Krans, Amy</creatorcontrib><creatorcontrib>Jafar-Nejad, Paymaan</creatorcontrib><creatorcontrib>Sutton, Michael A.</creatorcontrib><creatorcontrib>Bassell, Gary J.</creatorcontrib><creatorcontrib>Parent, Jack M.</creatorcontrib><creatorcontrib>Rigo, Frank</creatorcontrib><creatorcontrib>Barmada, Sami J.</creatorcontrib><creatorcontrib>Todd, Peter K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Caitlin M.</au><au>Wright, Shannon E.</au><au>Kearse, Michael G.</au><au>Haenfler, Jill M.</au><au>Flores, Brittany N.</au><au>Liu, Yu</au><au>Ifrim, Marius F.</au><au>Glineburg, Mary R.</au><au>Krans, Amy</au><au>Jafar-Nejad, Paymaan</au><au>Sutton, Michael A.</au><au>Bassell, Gary J.</au><au>Parent, Jack M.</au><au>Rigo, Frank</au><au>Barmada, Sami J.</au><au>Todd, Peter K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>23</volume><issue>3</issue><spage>386</spage><epage>397</epage><pages>386-397</pages><issn>1097-6256</issn><issn>1546-1726</issn><eissn>1546-1726</eissn><abstract>Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders. Rodriguez et al. define a native role for RAN translation and CGG repeats in regulating mGluR-dependent fragile X protein (FMRP) synthesis. RAN-blocking antisense oligonucleotides increase FMRP and improve survival of neurons from patients with repeat expansions.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32066985</pmid><doi>10.1038/s41593-020-0590-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9604-968X</orcidid><orcidid>https://orcid.org/0000-0003-4781-6376</orcidid><orcidid>https://orcid.org/0000-0003-2622-0127</orcidid><orcidid>https://orcid.org/0000-0002-2972-1528</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2020-03, Vol.23 (3), p.386-397
issn 1097-6256
1546-1726
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668390
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 631/337/574
631/378/1689/2608
631/378/1689/364
631/378/2583
631/45/500
Animal Genetics and Genomics
Animals
Antisense oligonucleotides
Ataxia
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Cell Line
Cell Survival - genetics
Control
DNA Repeat Expansion - genetics
Female
FMR1 protein
Fragile X Mental Retardation Protein - biosynthesis
Fragile X Mental Retardation Protein - genetics
Fragile X syndrome
Fragile X Syndrome - genetics
Genetic aspects
Genetic translation
Glutamic acid receptors (metabotropic)
Induced Pluripotent Stem Cells
Intellectual disabilities
Male
Mental illness
Mice
Neurobiology
Neurodegeneration
Neurons
Neurons - metabolism
Neurosciences
Oligonucleotides
Oligonucleotides, Antisense - pharmacology
Physiological aspects
Protein Biosynthesis
Protein synthesis
Proteins
Rats
Rats, Long-Evans
Rats, Sprague-Dawley
Receptor, Metabotropic Glutamate 5 - biosynthesis
Receptor, Metabotropic Glutamate 5 - genetics
Receptors
RNA
Survival
Synthesis
Toxicity
Translation
Tremor
Trinucleotide Repeats - genetics
title A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20native%20function%20for%20RAN%20translation%20and%20CGG%20repeats%20in%20regulating%20fragile%20X%20protein%20synthesis&rft.jtitle=Nature%20neuroscience&rft.au=Rodriguez,%20Caitlin%20M.&rft.date=2020-03-01&rft.volume=23&rft.issue=3&rft.spage=386&rft.epage=397&rft.pages=386-397&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-020-0590-1&rft_dat=%3Cgale_pubme%3EA618258094%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375479982&rft_id=info:pmid/32066985&rft_galeid=A618258094&rfr_iscdi=true