A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis
Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved role...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2020-03, Vol.23 (3), p.386-397 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 397 |
---|---|
container_issue | 3 |
container_start_page | 386 |
container_title | Nature neuroscience |
container_volume | 23 |
creator | Rodriguez, Caitlin M. Wright, Shannon E. Kearse, Michael G. Haenfler, Jill M. Flores, Brittany N. Liu, Yu Ifrim, Marius F. Glineburg, Mary R. Krans, Amy Jafar-Nejad, Paymaan Sutton, Michael A. Bassell, Gary J. Parent, Jack M. Rigo, Frank Barmada, Sami J. Todd, Peter K. |
description | Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the
FMR1
5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.
Rodriguez et al. define a native role for RAN translation and CGG repeats in regulating mGluR-dependent fragile X protein (FMRP) synthesis. RAN-blocking antisense oligonucleotides increase FMRP and improve survival of neurons from patients with repeat expansions. |
doi_str_mv | 10.1038/s41593-020-0590-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618258094</galeid><sourcerecordid>A618258094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-4c4aa88ca91b80e53d706f8f026fa3a76563ddf022641829b647dc73d180b56d3</originalsourceid><addsrcrecordid>eNp1kk1rVDEUhoMotlZ_gBsJuNHFrfm4-doIw6BjoShUBXchk5vcptxJxiS32H9vxqmtI0oWOcl5zpucwwvAc4xOMaLyTekxU7RDBHWIKdThB-AYs553WBD-sMVIiY4Txo_Ak1KuEEKCSfUYHFGCOFeSHQO9gNHUcO2gn6OtIUXoU4YXi4-wZhPLZH7dmTjA5WoFs9s6UwsMsYXjvMvGEfpsxjA5-A1uc6quJctNrJeuhPIUPPJmKu7Z7X4Cvr5_92X5oTv_tDpbLs47y6moXW97Y6S0RuG1RI7RQSDupUeEe0ON4IzTYWhHwnssiVrzXgxW0AFLtGZ8oCfg7V53O683brAutu9PepvDxuQbnUzQh5kYLvWYrrXgXFKFmsCrW4Gcvs-uVL0JxbppMtGluWhCmeiZ4Fg09OVf6FWac2ztNUqwXiglyT01msnpEH1q79qdqF7w1gOTSPWNOv0H1dbgNsGm6Hwb7GHB64OCxlT3o45mLkWffb44ZPGetTmVkp2_mwdGeucgvXeQbg7SOwdp3Gpe_DnIu4rflmkA2QOlpeLo8n33_1f9CRNkzrE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375479982</pqid></control><display><type>article</type><title>A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Rodriguez, Caitlin M. ; Wright, Shannon E. ; Kearse, Michael G. ; Haenfler, Jill M. ; Flores, Brittany N. ; Liu, Yu ; Ifrim, Marius F. ; Glineburg, Mary R. ; Krans, Amy ; Jafar-Nejad, Paymaan ; Sutton, Michael A. ; Bassell, Gary J. ; Parent, Jack M. ; Rigo, Frank ; Barmada, Sami J. ; Todd, Peter K.</creator><creatorcontrib>Rodriguez, Caitlin M. ; Wright, Shannon E. ; Kearse, Michael G. ; Haenfler, Jill M. ; Flores, Brittany N. ; Liu, Yu ; Ifrim, Marius F. ; Glineburg, Mary R. ; Krans, Amy ; Jafar-Nejad, Paymaan ; Sutton, Michael A. ; Bassell, Gary J. ; Parent, Jack M. ; Rigo, Frank ; Barmada, Sami J. ; Todd, Peter K.</creatorcontrib><description>Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the
FMR1
5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.
Rodriguez et al. define a native role for RAN translation and CGG repeats in regulating mGluR-dependent fragile X protein (FMRP) synthesis. RAN-blocking antisense oligonucleotides increase FMRP and improve survival of neurons from patients with repeat expansions.</description><identifier>ISSN: 1097-6256</identifier><identifier>ISSN: 1546-1726</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-020-0590-1</identifier><identifier>PMID: 32066985</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/574 ; 631/378/1689/2608 ; 631/378/1689/364 ; 631/378/2583 ; 631/45/500 ; Animal Genetics and Genomics ; Animals ; Antisense oligonucleotides ; Ataxia ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Cell Line ; Cell Survival - genetics ; Control ; DNA Repeat Expansion - genetics ; Female ; FMR1 protein ; Fragile X Mental Retardation Protein - biosynthesis ; Fragile X Mental Retardation Protein - genetics ; Fragile X syndrome ; Fragile X Syndrome - genetics ; Genetic aspects ; Genetic translation ; Glutamic acid receptors (metabotropic) ; Induced Pluripotent Stem Cells ; Intellectual disabilities ; Male ; Mental illness ; Mice ; Neurobiology ; Neurodegeneration ; Neurons ; Neurons - metabolism ; Neurosciences ; Oligonucleotides ; Oligonucleotides, Antisense - pharmacology ; Physiological aspects ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Rats ; Rats, Long-Evans ; Rats, Sprague-Dawley ; Receptor, Metabotropic Glutamate 5 - biosynthesis ; Receptor, Metabotropic Glutamate 5 - genetics ; Receptors ; RNA ; Survival ; Synthesis ; Toxicity ; Translation ; Tremor ; Trinucleotide Repeats - genetics</subject><ispartof>Nature neuroscience, 2020-03, Vol.23 (3), p.386-397</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-4c4aa88ca91b80e53d706f8f026fa3a76563ddf022641829b647dc73d180b56d3</citedby><cites>FETCH-LOGICAL-c637t-4c4aa88ca91b80e53d706f8f026fa3a76563ddf022641829b647dc73d180b56d3</cites><orcidid>0000-0002-9604-968X ; 0000-0003-4781-6376 ; 0000-0003-2622-0127 ; 0000-0002-2972-1528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-020-0590-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-020-0590-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32066985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodriguez, Caitlin M.</creatorcontrib><creatorcontrib>Wright, Shannon E.</creatorcontrib><creatorcontrib>Kearse, Michael G.</creatorcontrib><creatorcontrib>Haenfler, Jill M.</creatorcontrib><creatorcontrib>Flores, Brittany N.</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Ifrim, Marius F.</creatorcontrib><creatorcontrib>Glineburg, Mary R.</creatorcontrib><creatorcontrib>Krans, Amy</creatorcontrib><creatorcontrib>Jafar-Nejad, Paymaan</creatorcontrib><creatorcontrib>Sutton, Michael A.</creatorcontrib><creatorcontrib>Bassell, Gary J.</creatorcontrib><creatorcontrib>Parent, Jack M.</creatorcontrib><creatorcontrib>Rigo, Frank</creatorcontrib><creatorcontrib>Barmada, Sami J.</creatorcontrib><creatorcontrib>Todd, Peter K.</creatorcontrib><title>A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the
FMR1
5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.
Rodriguez et al. define a native role for RAN translation and CGG repeats in regulating mGluR-dependent fragile X protein (FMRP) synthesis. RAN-blocking antisense oligonucleotides increase FMRP and improve survival of neurons from patients with repeat expansions.</description><subject>631/337/574</subject><subject>631/378/1689/2608</subject><subject>631/378/1689/364</subject><subject>631/378/2583</subject><subject>631/45/500</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Antisense oligonucleotides</subject><subject>Ataxia</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Line</subject><subject>Cell Survival - genetics</subject><subject>Control</subject><subject>DNA Repeat Expansion - genetics</subject><subject>Female</subject><subject>FMR1 protein</subject><subject>Fragile X Mental Retardation Protein - biosynthesis</subject><subject>Fragile X Mental Retardation Protein - genetics</subject><subject>Fragile X syndrome</subject><subject>Fragile X Syndrome - genetics</subject><subject>Genetic aspects</subject><subject>Genetic translation</subject><subject>Glutamic acid receptors (metabotropic)</subject><subject>Induced Pluripotent Stem Cells</subject><subject>Intellectual disabilities</subject><subject>Male</subject><subject>Mental illness</subject><subject>Mice</subject><subject>Neurobiology</subject><subject>Neurodegeneration</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Oligonucleotides</subject><subject>Oligonucleotides, Antisense - pharmacology</subject><subject>Physiological aspects</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, Metabotropic Glutamate 5 - biosynthesis</subject><subject>Receptor, Metabotropic Glutamate 5 - genetics</subject><subject>Receptors</subject><subject>RNA</subject><subject>Survival</subject><subject>Synthesis</subject><subject>Toxicity</subject><subject>Translation</subject><subject>Tremor</subject><subject>Trinucleotide Repeats - genetics</subject><issn>1097-6256</issn><issn>1546-1726</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kk1rVDEUhoMotlZ_gBsJuNHFrfm4-doIw6BjoShUBXchk5vcptxJxiS32H9vxqmtI0oWOcl5zpucwwvAc4xOMaLyTekxU7RDBHWIKdThB-AYs553WBD-sMVIiY4Txo_Ak1KuEEKCSfUYHFGCOFeSHQO9gNHUcO2gn6OtIUXoU4YXi4-wZhPLZH7dmTjA5WoFs9s6UwsMsYXjvMvGEfpsxjA5-A1uc6quJctNrJeuhPIUPPJmKu7Z7X4Cvr5_92X5oTv_tDpbLs47y6moXW97Y6S0RuG1RI7RQSDupUeEe0ON4IzTYWhHwnssiVrzXgxW0AFLtGZ8oCfg7V53O683brAutu9PepvDxuQbnUzQh5kYLvWYrrXgXFKFmsCrW4Gcvs-uVL0JxbppMtGluWhCmeiZ4Fg09OVf6FWac2ztNUqwXiglyT01msnpEH1q79qdqF7w1gOTSPWNOv0H1dbgNsGm6Hwb7GHB64OCxlT3o45mLkWffb44ZPGetTmVkp2_mwdGeucgvXeQbg7SOwdp3Gpe_DnIu4rflmkA2QOlpeLo8n33_1f9CRNkzrE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Rodriguez, Caitlin M.</creator><creator>Wright, Shannon E.</creator><creator>Kearse, Michael G.</creator><creator>Haenfler, Jill M.</creator><creator>Flores, Brittany N.</creator><creator>Liu, Yu</creator><creator>Ifrim, Marius F.</creator><creator>Glineburg, Mary R.</creator><creator>Krans, Amy</creator><creator>Jafar-Nejad, Paymaan</creator><creator>Sutton, Michael A.</creator><creator>Bassell, Gary J.</creator><creator>Parent, Jack M.</creator><creator>Rigo, Frank</creator><creator>Barmada, Sami J.</creator><creator>Todd, Peter K.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9604-968X</orcidid><orcidid>https://orcid.org/0000-0003-4781-6376</orcidid><orcidid>https://orcid.org/0000-0003-2622-0127</orcidid><orcidid>https://orcid.org/0000-0002-2972-1528</orcidid></search><sort><creationdate>20200301</creationdate><title>A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis</title><author>Rodriguez, Caitlin M. ; Wright, Shannon E. ; Kearse, Michael G. ; Haenfler, Jill M. ; Flores, Brittany N. ; Liu, Yu ; Ifrim, Marius F. ; Glineburg, Mary R. ; Krans, Amy ; Jafar-Nejad, Paymaan ; Sutton, Michael A. ; Bassell, Gary J. ; Parent, Jack M. ; Rigo, Frank ; Barmada, Sami J. ; Todd, Peter K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-4c4aa88ca91b80e53d706f8f026fa3a76563ddf022641829b647dc73d180b56d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/337/574</topic><topic>631/378/1689/2608</topic><topic>631/378/1689/364</topic><topic>631/378/2583</topic><topic>631/45/500</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Antisense oligonucleotides</topic><topic>Ataxia</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Line</topic><topic>Cell Survival - genetics</topic><topic>Control</topic><topic>DNA Repeat Expansion - genetics</topic><topic>Female</topic><topic>FMR1 protein</topic><topic>Fragile X Mental Retardation Protein - biosynthesis</topic><topic>Fragile X Mental Retardation Protein - genetics</topic><topic>Fragile X syndrome</topic><topic>Fragile X Syndrome - genetics</topic><topic>Genetic aspects</topic><topic>Genetic translation</topic><topic>Glutamic acid receptors (metabotropic)</topic><topic>Induced Pluripotent Stem Cells</topic><topic>Intellectual disabilities</topic><topic>Male</topic><topic>Mental illness</topic><topic>Mice</topic><topic>Neurobiology</topic><topic>Neurodegeneration</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Oligonucleotides</topic><topic>Oligonucleotides, Antisense - pharmacology</topic><topic>Physiological aspects</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, Metabotropic Glutamate 5 - biosynthesis</topic><topic>Receptor, Metabotropic Glutamate 5 - genetics</topic><topic>Receptors</topic><topic>RNA</topic><topic>Survival</topic><topic>Synthesis</topic><topic>Toxicity</topic><topic>Translation</topic><topic>Tremor</topic><topic>Trinucleotide Repeats - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Caitlin M.</creatorcontrib><creatorcontrib>Wright, Shannon E.</creatorcontrib><creatorcontrib>Kearse, Michael G.</creatorcontrib><creatorcontrib>Haenfler, Jill M.</creatorcontrib><creatorcontrib>Flores, Brittany N.</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Ifrim, Marius F.</creatorcontrib><creatorcontrib>Glineburg, Mary R.</creatorcontrib><creatorcontrib>Krans, Amy</creatorcontrib><creatorcontrib>Jafar-Nejad, Paymaan</creatorcontrib><creatorcontrib>Sutton, Michael A.</creatorcontrib><creatorcontrib>Bassell, Gary J.</creatorcontrib><creatorcontrib>Parent, Jack M.</creatorcontrib><creatorcontrib>Rigo, Frank</creatorcontrib><creatorcontrib>Barmada, Sami J.</creatorcontrib><creatorcontrib>Todd, Peter K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Caitlin M.</au><au>Wright, Shannon E.</au><au>Kearse, Michael G.</au><au>Haenfler, Jill M.</au><au>Flores, Brittany N.</au><au>Liu, Yu</au><au>Ifrim, Marius F.</au><au>Glineburg, Mary R.</au><au>Krans, Amy</au><au>Jafar-Nejad, Paymaan</au><au>Sutton, Michael A.</au><au>Bassell, Gary J.</au><au>Parent, Jack M.</au><au>Rigo, Frank</au><au>Barmada, Sami J.</au><au>Todd, Peter K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>23</volume><issue>3</issue><spage>386</spage><epage>397</epage><pages>386-397</pages><issn>1097-6256</issn><issn>1546-1726</issn><eissn>1546-1726</eissn><abstract>Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the
FMR1
5′-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.
Rodriguez et al. define a native role for RAN translation and CGG repeats in regulating mGluR-dependent fragile X protein (FMRP) synthesis. RAN-blocking antisense oligonucleotides increase FMRP and improve survival of neurons from patients with repeat expansions.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32066985</pmid><doi>10.1038/s41593-020-0590-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9604-968X</orcidid><orcidid>https://orcid.org/0000-0003-4781-6376</orcidid><orcidid>https://orcid.org/0000-0003-2622-0127</orcidid><orcidid>https://orcid.org/0000-0002-2972-1528</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2020-03, Vol.23 (3), p.386-397 |
issn | 1097-6256 1546-1726 1546-1726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668390 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | 631/337/574 631/378/1689/2608 631/378/1689/364 631/378/2583 631/45/500 Animal Genetics and Genomics Animals Antisense oligonucleotides Ataxia Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Cell Line Cell Survival - genetics Control DNA Repeat Expansion - genetics Female FMR1 protein Fragile X Mental Retardation Protein - biosynthesis Fragile X Mental Retardation Protein - genetics Fragile X syndrome Fragile X Syndrome - genetics Genetic aspects Genetic translation Glutamic acid receptors (metabotropic) Induced Pluripotent Stem Cells Intellectual disabilities Male Mental illness Mice Neurobiology Neurodegeneration Neurons Neurons - metabolism Neurosciences Oligonucleotides Oligonucleotides, Antisense - pharmacology Physiological aspects Protein Biosynthesis Protein synthesis Proteins Rats Rats, Long-Evans Rats, Sprague-Dawley Receptor, Metabotropic Glutamate 5 - biosynthesis Receptor, Metabotropic Glutamate 5 - genetics Receptors RNA Survival Synthesis Toxicity Translation Tremor Trinucleotide Repeats - genetics |
title | A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20native%20function%20for%20RAN%20translation%20and%20CGG%20repeats%20in%20regulating%20fragile%20X%20protein%20synthesis&rft.jtitle=Nature%20neuroscience&rft.au=Rodriguez,%20Caitlin%20M.&rft.date=2020-03-01&rft.volume=23&rft.issue=3&rft.spage=386&rft.epage=397&rft.pages=386-397&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-020-0590-1&rft_dat=%3Cgale_pubme%3EA618258094%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375479982&rft_id=info:pmid/32066985&rft_galeid=A618258094&rfr_iscdi=true |