Two-step crystallization and solid–solid transitions in binary colloidal mixtures
Crystallization is fundamental to materials science and is central to a variety of applications, ranging from the fabrication of silicon wafers for microelectronics to the determination of protein structures. The basic picture is that a crystal nucleates from a homogeneous fluid by a spontaneous flu...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-11, Vol.117 (45), p.27927-27933 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27933 |
---|---|
container_issue | 45 |
container_start_page | 27927 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Fang, Huang Hagan, Michael F. Rogers, W. Benjamin |
description | Crystallization is fundamental to materials science and is central to a variety of applications, ranging from the fabrication of silicon wafers for microelectronics to the determination of protein structures. The basic picture is that a crystal nucleates from a homogeneous fluid by a spontaneous fluctuation that kicks the system over a single free-energy barrier. However, it is becoming apparent that nucleation is often more complicated than this simple picture and, instead, can proceed via multiple transformations of metastable structures along the pathway to the thermodynamic minimum. In this article, we observe, characterize, and model crystallization pathways using DNA-coated colloids. We use optical microscopy to investigate the crystallization of a binary colloidal mixture with single-particle resolution. We observe classical one-step pathways and nonclassical two-step pathways that proceed via a solid–solid transformation of a crystal intermediate. We also use enhanced sampling to compute the free-energy landscapes corresponding to our experiments and show that both one- and two-step pathways are driven by thermodynamics alone. Specifically, the two-step solid–solid transition is governed by a competition between two different crystal phases with free energies that depend on the crystal size. These results extend our understanding of available pathways to crystallization, by showing that size-dependent thermodynamic forces can produce pathways with multiple crystal phases that interconvert without free-energy barriers and could provide approaches to controlling the self-assembly of materials made from colloids. |
doi_str_mv | 10.1073/pnas.2008561117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26970690</jstor_id><sourcerecordid>26970690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-349838a17099f88ddf2dba7b290652f78fa1463cb234514a39c7eed5e0604eb83</originalsourceid><addsrcrecordid>eNpdkTtvFDEUhS1ERJZATQUaKQ3NJNeP8aNBQqsQIkVKQagtz4wHvPLYiz0Tsqn4D_xDfkm8bLI8qluc7x6dew9CrzCcYBD0dB1MPiEAsuEYY_EELTAoXHOm4ClaABBRS0bYIXqe8woAVCPhGTqkFBPCGFmgT9ffY50nu666tMmT8d7dmcnFUJnQVzl61__68fP3rKZkQnZbMVcuVK0LJm2qLnofXW98NbrbaU42v0AHg_HZvnyYR-jzh7Pr5cf68ur8Yvn-su4aUFNNmZJUGixAqUHKvh9I3xrREgW8IYOQg8GM064llDWYGao6YW3fWODAbCvpEXq3813P7Wj7zoaS0Ot1cmMJpqNx-l8luK_6S7zRgnOJgRaDtw8GKX6bbZ706HJnvTfBxjlrwhrOyqcUK-jxf-gqzimU8wrFCRMSN6RQpzuqSzHnZId9GAx6W5jeFqb_FFY23vx9w55_bKgAr3fAKk8x7XXClQCugN4DJJadxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462478152</pqid></control><display><type>article</type><title>Two-step crystallization and solid–solid transitions in binary colloidal mixtures</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fang, Huang ; Hagan, Michael F. ; Rogers, W. Benjamin</creator><creatorcontrib>Fang, Huang ; Hagan, Michael F. ; Rogers, W. Benjamin</creatorcontrib><description>Crystallization is fundamental to materials science and is central to a variety of applications, ranging from the fabrication of silicon wafers for microelectronics to the determination of protein structures. The basic picture is that a crystal nucleates from a homogeneous fluid by a spontaneous fluctuation that kicks the system over a single free-energy barrier. However, it is becoming apparent that nucleation is often more complicated than this simple picture and, instead, can proceed via multiple transformations of metastable structures along the pathway to the thermodynamic minimum. In this article, we observe, characterize, and model crystallization pathways using DNA-coated colloids. We use optical microscopy to investigate the crystallization of a binary colloidal mixture with single-particle resolution. We observe classical one-step pathways and nonclassical two-step pathways that proceed via a solid–solid transformation of a crystal intermediate. We also use enhanced sampling to compute the free-energy landscapes corresponding to our experiments and show that both one- and two-step pathways are driven by thermodynamics alone. Specifically, the two-step solid–solid transition is governed by a competition between two different crystal phases with free energies that depend on the crystal size. These results extend our understanding of available pathways to crystallization, by showing that size-dependent thermodynamic forces can produce pathways with multiple crystal phases that interconvert without free-energy barriers and could provide approaches to controlling the self-assembly of materials made from colloids.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2008561117</identifier><identifier>PMID: 33122442</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Colloids ; Colloids - chemistry ; Computer Simulation ; Crystal structure ; Crystallization ; Crystallization - methods ; Crystals ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Fabrication ; Free energy ; Light microscopy ; Materials science ; Nucleation ; Optical microscopy ; Physical Sciences ; Proteins - chemistry ; Self-assembly ; Silicon wafers ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-11, Vol.117 (45), p.27927-27933</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Nov 10, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-349838a17099f88ddf2dba7b290652f78fa1463cb234514a39c7eed5e0604eb83</citedby><cites>FETCH-LOGICAL-c509t-349838a17099f88ddf2dba7b290652f78fa1463cb234514a39c7eed5e0604eb83</cites><orcidid>0000-0002-9211-2434 ; 0000-0001-8587-8215 ; 0000-0001-5802-9330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26970690$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26970690$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33122442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Huang</creatorcontrib><creatorcontrib>Hagan, Michael F.</creatorcontrib><creatorcontrib>Rogers, W. Benjamin</creatorcontrib><title>Two-step crystallization and solid–solid transitions in binary colloidal mixtures</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Crystallization is fundamental to materials science and is central to a variety of applications, ranging from the fabrication of silicon wafers for microelectronics to the determination of protein structures. The basic picture is that a crystal nucleates from a homogeneous fluid by a spontaneous fluctuation that kicks the system over a single free-energy barrier. However, it is becoming apparent that nucleation is often more complicated than this simple picture and, instead, can proceed via multiple transformations of metastable structures along the pathway to the thermodynamic minimum. In this article, we observe, characterize, and model crystallization pathways using DNA-coated colloids. We use optical microscopy to investigate the crystallization of a binary colloidal mixture with single-particle resolution. We observe classical one-step pathways and nonclassical two-step pathways that proceed via a solid–solid transformation of a crystal intermediate. We also use enhanced sampling to compute the free-energy landscapes corresponding to our experiments and show that both one- and two-step pathways are driven by thermodynamics alone. Specifically, the two-step solid–solid transition is governed by a competition between two different crystal phases with free energies that depend on the crystal size. These results extend our understanding of available pathways to crystallization, by showing that size-dependent thermodynamic forces can produce pathways with multiple crystal phases that interconvert without free-energy barriers and could provide approaches to controlling the self-assembly of materials made from colloids.</description><subject>Colloids</subject><subject>Colloids - chemistry</subject><subject>Computer Simulation</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystallization - methods</subject><subject>Crystals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Fabrication</subject><subject>Free energy</subject><subject>Light microscopy</subject><subject>Materials science</subject><subject>Nucleation</subject><subject>Optical microscopy</subject><subject>Physical Sciences</subject><subject>Proteins - chemistry</subject><subject>Self-assembly</subject><subject>Silicon wafers</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkTtvFDEUhS1ERJZATQUaKQ3NJNeP8aNBQqsQIkVKQagtz4wHvPLYiz0Tsqn4D_xDfkm8bLI8qluc7x6dew9CrzCcYBD0dB1MPiEAsuEYY_EELTAoXHOm4ClaABBRS0bYIXqe8woAVCPhGTqkFBPCGFmgT9ffY50nu666tMmT8d7dmcnFUJnQVzl61__68fP3rKZkQnZbMVcuVK0LJm2qLnofXW98NbrbaU42v0AHg_HZvnyYR-jzh7Pr5cf68ur8Yvn-su4aUFNNmZJUGixAqUHKvh9I3xrREgW8IYOQg8GM064llDWYGao6YW3fWODAbCvpEXq3813P7Wj7zoaS0Ot1cmMJpqNx-l8luK_6S7zRgnOJgRaDtw8GKX6bbZ706HJnvTfBxjlrwhrOyqcUK-jxf-gqzimU8wrFCRMSN6RQpzuqSzHnZId9GAx6W5jeFqb_FFY23vx9w55_bKgAr3fAKk8x7XXClQCugN4DJJadxQ</recordid><startdate>20201110</startdate><enddate>20201110</enddate><creator>Fang, Huang</creator><creator>Hagan, Michael F.</creator><creator>Rogers, W. Benjamin</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9211-2434</orcidid><orcidid>https://orcid.org/0000-0001-8587-8215</orcidid><orcidid>https://orcid.org/0000-0001-5802-9330</orcidid></search><sort><creationdate>20201110</creationdate><title>Two-step crystallization and solid–solid transitions in binary colloidal mixtures</title><author>Fang, Huang ; Hagan, Michael F. ; Rogers, W. Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-349838a17099f88ddf2dba7b290652f78fa1463cb234514a39c7eed5e0604eb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Colloids</topic><topic>Colloids - chemistry</topic><topic>Computer Simulation</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystallization - methods</topic><topic>Crystals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Fabrication</topic><topic>Free energy</topic><topic>Light microscopy</topic><topic>Materials science</topic><topic>Nucleation</topic><topic>Optical microscopy</topic><topic>Physical Sciences</topic><topic>Proteins - chemistry</topic><topic>Self-assembly</topic><topic>Silicon wafers</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Huang</creatorcontrib><creatorcontrib>Hagan, Michael F.</creatorcontrib><creatorcontrib>Rogers, W. Benjamin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Huang</au><au>Hagan, Michael F.</au><au>Rogers, W. Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-step crystallization and solid–solid transitions in binary colloidal mixtures</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-11-10</date><risdate>2020</risdate><volume>117</volume><issue>45</issue><spage>27927</spage><epage>27933</epage><pages>27927-27933</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Crystallization is fundamental to materials science and is central to a variety of applications, ranging from the fabrication of silicon wafers for microelectronics to the determination of protein structures. The basic picture is that a crystal nucleates from a homogeneous fluid by a spontaneous fluctuation that kicks the system over a single free-energy barrier. However, it is becoming apparent that nucleation is often more complicated than this simple picture and, instead, can proceed via multiple transformations of metastable structures along the pathway to the thermodynamic minimum. In this article, we observe, characterize, and model crystallization pathways using DNA-coated colloids. We use optical microscopy to investigate the crystallization of a binary colloidal mixture with single-particle resolution. We observe classical one-step pathways and nonclassical two-step pathways that proceed via a solid–solid transformation of a crystal intermediate. We also use enhanced sampling to compute the free-energy landscapes corresponding to our experiments and show that both one- and two-step pathways are driven by thermodynamics alone. Specifically, the two-step solid–solid transition is governed by a competition between two different crystal phases with free energies that depend on the crystal size. These results extend our understanding of available pathways to crystallization, by showing that size-dependent thermodynamic forces can produce pathways with multiple crystal phases that interconvert without free-energy barriers and could provide approaches to controlling the self-assembly of materials made from colloids.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33122442</pmid><doi>10.1073/pnas.2008561117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9211-2434</orcidid><orcidid>https://orcid.org/0000-0001-8587-8215</orcidid><orcidid>https://orcid.org/0000-0001-5802-9330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-11, Vol.117 (45), p.27927-27933 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668103 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Colloids Colloids - chemistry Computer Simulation Crystal structure Crystallization Crystallization - methods Crystals Deoxyribonucleic acid DNA DNA - chemistry Fabrication Free energy Light microscopy Materials science Nucleation Optical microscopy Physical Sciences Proteins - chemistry Self-assembly Silicon wafers Thermodynamics |
title | Two-step crystallization and solid–solid transitions in binary colloidal mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-step%20crystallization%20and%20solid%E2%80%93solid%20transitions%20in%20binary%20colloidal%20mixtures&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fang,%20Huang&rft.date=2020-11-10&rft.volume=117&rft.issue=45&rft.spage=27927&rft.epage=27933&rft.pages=27927-27933&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2008561117&rft_dat=%3Cjstor_pubme%3E26970690%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462478152&rft_id=info:pmid/33122442&rft_jstor_id=26970690&rfr_iscdi=true |