A far-red cyanobacteriochrome lineage specific for verdins
Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable intere...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-11, Vol.117 (45), p.27962-27970 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27970 |
---|---|
container_issue | 45 |
container_start_page | 27962 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Moreno, Marcus V. Rockwell, Nathan C. Mora, Manuel Fisher, Andrew J. Lagarias, J. Clark |
description | Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of farred light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3’s far-red absorption arises from incorporation of the PCB biosynthetic intermediate 18¹,18²-dihydrobiliverdin (18¹,18²-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a farred–absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 18¹,18²-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications. |
doi_str_mv | 10.1073/pnas.2016047117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26970695</jstor_id><sourcerecordid>26970695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-b9e925df6697f29958528a806ff8dae3533d72e1e01f7038b796cba3073f71c43</originalsourceid><addsrcrecordid>eNpVkctvEzEQxi0EomnhzAm0as_bjh_rBwekqioPqRKX9mx5vePGUWIHe1Op_z2OUgKc5jC_-eab-Qj5QOGSguJX2-TqJQMqQShK1SuyoGBoL4WB12QBwFSvBRMn5LTWFQCYQcNbcsI5BSkYXZDP111wpS84df7ZpTw6P2OJ2S9L3mC3jgndI3Z1iz6G6LuQS_eEZYqpviNvgltXfP9Sz8jD19v7m-_93c9vP26u73o_aDb3o0HDhilIaVRgpjkYmHYaZAh6csgHzifFkCLQoIDrURnpR8fbeUFRL_gZ-XLQ3e7GDU4e01zc2m5L3LjybLOL9v9Oikv7mJ-sklID003g_CCQ6xxt9XFGv_Q5JfSzpdK0L-23XLxsKfnXDutsV3lXUjvMMiGZUEpQ2airA-VLrrVgONqgYPeJ2H0i9m8ibeLTv-6P_J8IGvDxAKzqnMuxz9q7QJqB_wbFEZAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462477416</pqid></control><display><type>article</type><title>A far-red cyanobacteriochrome lineage specific for verdins</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Moreno, Marcus V. ; Rockwell, Nathan C. ; Mora, Manuel ; Fisher, Andrew J. ; Lagarias, J. Clark</creator><creatorcontrib>Moreno, Marcus V. ; Rockwell, Nathan C. ; Mora, Manuel ; Fisher, Andrew J. ; Lagarias, J. Clark</creatorcontrib><description>Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of farred light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3’s far-red absorption arises from incorporation of the PCB biosynthetic intermediate 18¹,18²-dihydrobiliverdin (18¹,18²-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a farred–absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 18¹,18²-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2016047117</identifier><identifier>PMID: 33106421</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Absorption ; Adducts ; Bacterial Proteins - metabolism ; Biliverdin ; Biliverdine - chemistry ; Biological Sciences ; Cell lines ; Crystal structure ; Cyanobacteria ; Cyanobacteria - genetics ; Cyanobacteria - metabolism ; Light ; Mutagenesis ; Photoreceptor Cells - metabolism ; Photoreceptors, Microbial - chemistry ; Phycobilin ; Phycobilins - genetics ; Phycobilins - metabolism ; Phycocyanin - genetics ; Phycocyanin - metabolism ; Phycocyanobilin ; Phylogeny ; Physical Sciences ; Phytochrome - genetics ; Phytochrome - metabolism ; Porphyrins - genetics ; Porphyrins - metabolism ; Reagents</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-11, Vol.117 (45), p.27962-27970</ispartof><rights>Copyright National Academy of Sciences Nov 10, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-b9e925df6697f29958528a806ff8dae3533d72e1e01f7038b796cba3073f71c43</citedby><cites>FETCH-LOGICAL-c582t-b9e925df6697f29958528a806ff8dae3533d72e1e01f7038b796cba3073f71c43</cites><orcidid>0000-0002-9851-4741 ; 0000-0002-7748-7019 ; 0000-0002-2201-8792 ; 0000-0003-3488-6594 ; 0000-0002-2093-0403 ; 0000000334886594 ; 0000000298514741 ; 0000000220930403 ; 0000000277487019 ; 0000000222018792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26970695$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26970695$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33106421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1690274$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreno, Marcus V.</creatorcontrib><creatorcontrib>Rockwell, Nathan C.</creatorcontrib><creatorcontrib>Mora, Manuel</creatorcontrib><creatorcontrib>Fisher, Andrew J.</creatorcontrib><creatorcontrib>Lagarias, J. Clark</creatorcontrib><title>A far-red cyanobacteriochrome lineage specific for verdins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of farred light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3’s far-red absorption arises from incorporation of the PCB biosynthetic intermediate 18¹,18²-dihydrobiliverdin (18¹,18²-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a farred–absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 18¹,18²-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.</description><subject>Absorption</subject><subject>Adducts</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biliverdin</subject><subject>Biliverdine - chemistry</subject><subject>Biological Sciences</subject><subject>Cell lines</subject><subject>Crystal structure</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - metabolism</subject><subject>Light</subject><subject>Mutagenesis</subject><subject>Photoreceptor Cells - metabolism</subject><subject>Photoreceptors, Microbial - chemistry</subject><subject>Phycobilin</subject><subject>Phycobilins - genetics</subject><subject>Phycobilins - metabolism</subject><subject>Phycocyanin - genetics</subject><subject>Phycocyanin - metabolism</subject><subject>Phycocyanobilin</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>Phytochrome - genetics</subject><subject>Phytochrome - metabolism</subject><subject>Porphyrins - genetics</subject><subject>Porphyrins - metabolism</subject><subject>Reagents</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctvEzEQxi0EomnhzAm0as_bjh_rBwekqioPqRKX9mx5vePGUWIHe1Op_z2OUgKc5jC_-eab-Qj5QOGSguJX2-TqJQMqQShK1SuyoGBoL4WB12QBwFSvBRMn5LTWFQCYQcNbcsI5BSkYXZDP111wpS84df7ZpTw6P2OJ2S9L3mC3jgndI3Z1iz6G6LuQS_eEZYqpviNvgltXfP9Sz8jD19v7m-_93c9vP26u73o_aDb3o0HDhilIaVRgpjkYmHYaZAh6csgHzifFkCLQoIDrURnpR8fbeUFRL_gZ-XLQ3e7GDU4e01zc2m5L3LjybLOL9v9Oikv7mJ-sklID003g_CCQ6xxt9XFGv_Q5JfSzpdK0L-23XLxsKfnXDutsV3lXUjvMMiGZUEpQ2airA-VLrrVgONqgYPeJ2H0i9m8ibeLTv-6P_J8IGvDxAKzqnMuxz9q7QJqB_wbFEZAw</recordid><startdate>20201110</startdate><enddate>20201110</enddate><creator>Moreno, Marcus V.</creator><creator>Rockwell, Nathan C.</creator><creator>Mora, Manuel</creator><creator>Fisher, Andrew J.</creator><creator>Lagarias, J. Clark</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9851-4741</orcidid><orcidid>https://orcid.org/0000-0002-7748-7019</orcidid><orcidid>https://orcid.org/0000-0002-2201-8792</orcidid><orcidid>https://orcid.org/0000-0003-3488-6594</orcidid><orcidid>https://orcid.org/0000-0002-2093-0403</orcidid><orcidid>https://orcid.org/0000000334886594</orcidid><orcidid>https://orcid.org/0000000298514741</orcidid><orcidid>https://orcid.org/0000000220930403</orcidid><orcidid>https://orcid.org/0000000277487019</orcidid><orcidid>https://orcid.org/0000000222018792</orcidid></search><sort><creationdate>20201110</creationdate><title>A far-red cyanobacteriochrome lineage specific for verdins</title><author>Moreno, Marcus V. ; Rockwell, Nathan C. ; Mora, Manuel ; Fisher, Andrew J. ; Lagarias, J. Clark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-b9e925df6697f29958528a806ff8dae3533d72e1e01f7038b796cba3073f71c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Adducts</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biliverdin</topic><topic>Biliverdine - chemistry</topic><topic>Biological Sciences</topic><topic>Cell lines</topic><topic>Crystal structure</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - metabolism</topic><topic>Light</topic><topic>Mutagenesis</topic><topic>Photoreceptor Cells - metabolism</topic><topic>Photoreceptors, Microbial - chemistry</topic><topic>Phycobilin</topic><topic>Phycobilins - genetics</topic><topic>Phycobilins - metabolism</topic><topic>Phycocyanin - genetics</topic><topic>Phycocyanin - metabolism</topic><topic>Phycocyanobilin</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>Phytochrome - genetics</topic><topic>Phytochrome - metabolism</topic><topic>Porphyrins - genetics</topic><topic>Porphyrins - metabolism</topic><topic>Reagents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno, Marcus V.</creatorcontrib><creatorcontrib>Rockwell, Nathan C.</creatorcontrib><creatorcontrib>Mora, Manuel</creatorcontrib><creatorcontrib>Fisher, Andrew J.</creatorcontrib><creatorcontrib>Lagarias, J. Clark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno, Marcus V.</au><au>Rockwell, Nathan C.</au><au>Mora, Manuel</au><au>Fisher, Andrew J.</au><au>Lagarias, J. Clark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A far-red cyanobacteriochrome lineage specific for verdins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-11-10</date><risdate>2020</risdate><volume>117</volume><issue>45</issue><spage>27962</spage><epage>27970</epage><pages>27962-27970</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of farred light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3’s far-red absorption arises from incorporation of the PCB biosynthetic intermediate 18¹,18²-dihydrobiliverdin (18¹,18²-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a farred–absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 18¹,18²-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33106421</pmid><doi>10.1073/pnas.2016047117</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9851-4741</orcidid><orcidid>https://orcid.org/0000-0002-7748-7019</orcidid><orcidid>https://orcid.org/0000-0002-2201-8792</orcidid><orcidid>https://orcid.org/0000-0003-3488-6594</orcidid><orcidid>https://orcid.org/0000-0002-2093-0403</orcidid><orcidid>https://orcid.org/0000000334886594</orcidid><orcidid>https://orcid.org/0000000298514741</orcidid><orcidid>https://orcid.org/0000000220930403</orcidid><orcidid>https://orcid.org/0000000277487019</orcidid><orcidid>https://orcid.org/0000000222018792</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-11, Vol.117 (45), p.27962-27970 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668028 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Absorption Adducts Bacterial Proteins - metabolism Biliverdin Biliverdine - chemistry Biological Sciences Cell lines Crystal structure Cyanobacteria Cyanobacteria - genetics Cyanobacteria - metabolism Light Mutagenesis Photoreceptor Cells - metabolism Photoreceptors, Microbial - chemistry Phycobilin Phycobilins - genetics Phycobilins - metabolism Phycocyanin - genetics Phycocyanin - metabolism Phycocyanobilin Phylogeny Physical Sciences Phytochrome - genetics Phytochrome - metabolism Porphyrins - genetics Porphyrins - metabolism Reagents |
title | A far-red cyanobacteriochrome lineage specific for verdins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20far-red%20cyanobacteriochrome%20lineage%20specific%20for%20verdins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Moreno,%20Marcus%20V.&rft.date=2020-11-10&rft.volume=117&rft.issue=45&rft.spage=27962&rft.epage=27970&rft.pages=27962-27970&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2016047117&rft_dat=%3Cjstor_pubme%3E26970695%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462477416&rft_id=info:pmid/33106421&rft_jstor_id=26970695&rfr_iscdi=true |