Microstructural and Tensile Properties Anisotropy of Selective Laser Melting Manufactured IN 625

The present study was focused on the assessment of microstructural anisotropy of IN 625 manufactured by selective laser melting (SLM) and its influence on the material’s room temperature tensile properties. Microstructural anisotropy was assessed based on computational and experimental investigation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-10, Vol.13 (21), p.4829
Hauptverfasser: Condruz, Mihaela Raluca, Matache, Gheorghe, Paraschiv, Alexandru, Frigioescu, Tiberius Florian, Badea, Teodor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 4829
container_title Materials
container_volume 13
creator Condruz, Mihaela Raluca
Matache, Gheorghe
Paraschiv, Alexandru
Frigioescu, Tiberius Florian
Badea, Teodor
description The present study was focused on the assessment of microstructural anisotropy of IN 625 manufactured by selective laser melting (SLM) and its influence on the material’s room temperature tensile properties. Microstructural anisotropy was assessed based on computational and experimental investigations. Tensile specimens were manufactured using four building orientations (along Z, X, Y-axis, and tilted at 45° in the XZ plane) and three different scanning strategies (90°, 67°, and 45°). The simulation of microstructure development in specimens built along the Z-axis, applying all three scanning strategies, showed that the as-built microstructure is strongly textured and is influenced by the scanning strategy. The 45° scanning strategy induced the highest microstructural texture from all scanning strategies used. The monotonic tensile test results highlighted that the material exhibits significant anisotropic properties, depending on both the specimen orientation and the scanning strategy. Regardless of the scanning strategy used, the lowest mechanical performances of IN 625, in terms of strength values, were recorded for specimens built in the vertical position, as compared with all the other orientations.
doi_str_mv 10.3390/ma13214829
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7663131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548722660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ac2b221e3166203d332085e4ac0d7152c68586c45bd1d2a70fdfef1a88739d4a3</originalsourceid><addsrcrecordid>eNpdkUtLAzEQx4MoKtWLnyDgRYRqXpvdvQgivqBVQT3HNJnVyDapSbbgtzdF8TVzmBnmx595ILRHyRHnLTmea8oZFQ1r19A2bVs5pq0Q67_yLbSb0ispxjkt3CbaKgmTtai30dPUmRhSjoPJQ9Q91t7iB_DJ9YDvYlhAzA4SPvUuhVzqdxw6fA89mOyWgCc6QcRT6LPzz3iq_dDplRJYfH2DJat20Ean-wS7X3GEHi_OH86uxpPby-uz08nY8IbnsTZsxhgFTqVkhFvOGWkqENoQW9OKGdlUjTSimllqma5JZzvoqG6amrdWaD5CJ5-6i2E2B2vA57KOWkQ31_FdBe3U3453L-o5LFUtJafFR-jgSyCGtwFSVnOXDPS99hCGpJiopKBCVG1B9_-hr2GIvqynWCWamjEpSaEOP6nVgVOE7nsYStTqd-rnd_wDWEKKZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548722660</pqid></control><display><type>article</type><title>Microstructural and Tensile Properties Anisotropy of Selective Laser Melting Manufactured IN 625</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Condruz, Mihaela Raluca ; Matache, Gheorghe ; Paraschiv, Alexandru ; Frigioescu, Tiberius Florian ; Badea, Teodor</creator><creatorcontrib>Condruz, Mihaela Raluca ; Matache, Gheorghe ; Paraschiv, Alexandru ; Frigioescu, Tiberius Florian ; Badea, Teodor</creatorcontrib><description>The present study was focused on the assessment of microstructural anisotropy of IN 625 manufactured by selective laser melting (SLM) and its influence on the material’s room temperature tensile properties. Microstructural anisotropy was assessed based on computational and experimental investigations. Tensile specimens were manufactured using four building orientations (along Z, X, Y-axis, and tilted at 45° in the XZ plane) and three different scanning strategies (90°, 67°, and 45°). The simulation of microstructure development in specimens built along the Z-axis, applying all three scanning strategies, showed that the as-built microstructure is strongly textured and is influenced by the scanning strategy. The 45° scanning strategy induced the highest microstructural texture from all scanning strategies used. The monotonic tensile test results highlighted that the material exhibits significant anisotropic properties, depending on both the specimen orientation and the scanning strategy. Regardless of the scanning strategy used, the lowest mechanical performances of IN 625, in terms of strength values, were recorded for specimens built in the vertical position, as compared with all the other orientations.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13214829</identifier><identifier>PMID: 33126747</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additive manufacturing ; Advanced manufacturing technologies ; Alloys ; Anisotropy ; Cooling ; Discount coupons ; Heat treating ; Laser beam melting ; Lasers ; Mechanical properties ; Microscopy ; Microstructure ; Morphology ; Raw materials ; Room temperature ; Scanning ; Simulation ; Tensile properties ; Tensile tests ; Vertical orientation ; Yield stress</subject><ispartof>Materials, 2020-10, Vol.13 (21), p.4829</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ac2b221e3166203d332085e4ac0d7152c68586c45bd1d2a70fdfef1a88739d4a3</citedby><cites>FETCH-LOGICAL-c383t-ac2b221e3166203d332085e4ac0d7152c68586c45bd1d2a70fdfef1a88739d4a3</cites><orcidid>0000-0002-6663-3420 ; 0000-0002-1768-4491 ; 0000-0002-7772-1207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663131/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663131/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids></links><search><creatorcontrib>Condruz, Mihaela Raluca</creatorcontrib><creatorcontrib>Matache, Gheorghe</creatorcontrib><creatorcontrib>Paraschiv, Alexandru</creatorcontrib><creatorcontrib>Frigioescu, Tiberius Florian</creatorcontrib><creatorcontrib>Badea, Teodor</creatorcontrib><title>Microstructural and Tensile Properties Anisotropy of Selective Laser Melting Manufactured IN 625</title><title>Materials</title><description>The present study was focused on the assessment of microstructural anisotropy of IN 625 manufactured by selective laser melting (SLM) and its influence on the material’s room temperature tensile properties. Microstructural anisotropy was assessed based on computational and experimental investigations. Tensile specimens were manufactured using four building orientations (along Z, X, Y-axis, and tilted at 45° in the XZ plane) and three different scanning strategies (90°, 67°, and 45°). The simulation of microstructure development in specimens built along the Z-axis, applying all three scanning strategies, showed that the as-built microstructure is strongly textured and is influenced by the scanning strategy. The 45° scanning strategy induced the highest microstructural texture from all scanning strategies used. The monotonic tensile test results highlighted that the material exhibits significant anisotropic properties, depending on both the specimen orientation and the scanning strategy. Regardless of the scanning strategy used, the lowest mechanical performances of IN 625, in terms of strength values, were recorded for specimens built in the vertical position, as compared with all the other orientations.</description><subject>Additive manufacturing</subject><subject>Advanced manufacturing technologies</subject><subject>Alloys</subject><subject>Anisotropy</subject><subject>Cooling</subject><subject>Discount coupons</subject><subject>Heat treating</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Raw materials</subject><subject>Room temperature</subject><subject>Scanning</subject><subject>Simulation</subject><subject>Tensile properties</subject><subject>Tensile tests</subject><subject>Vertical orientation</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLAzEQx4MoKtWLnyDgRYRqXpvdvQgivqBVQT3HNJnVyDapSbbgtzdF8TVzmBnmx595ILRHyRHnLTmea8oZFQ1r19A2bVs5pq0Q67_yLbSb0ispxjkt3CbaKgmTtai30dPUmRhSjoPJQ9Q91t7iB_DJ9YDvYlhAzA4SPvUuhVzqdxw6fA89mOyWgCc6QcRT6LPzz3iq_dDplRJYfH2DJat20Ean-wS7X3GEHi_OH86uxpPby-uz08nY8IbnsTZsxhgFTqVkhFvOGWkqENoQW9OKGdlUjTSimllqma5JZzvoqG6amrdWaD5CJ5-6i2E2B2vA57KOWkQ31_FdBe3U3453L-o5LFUtJafFR-jgSyCGtwFSVnOXDPS99hCGpJiopKBCVG1B9_-hr2GIvqynWCWamjEpSaEOP6nVgVOE7nsYStTqd-rnd_wDWEKKZg</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Condruz, Mihaela Raluca</creator><creator>Matache, Gheorghe</creator><creator>Paraschiv, Alexandru</creator><creator>Frigioescu, Tiberius Florian</creator><creator>Badea, Teodor</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6663-3420</orcidid><orcidid>https://orcid.org/0000-0002-1768-4491</orcidid><orcidid>https://orcid.org/0000-0002-7772-1207</orcidid></search><sort><creationdate>20201028</creationdate><title>Microstructural and Tensile Properties Anisotropy of Selective Laser Melting Manufactured IN 625</title><author>Condruz, Mihaela Raluca ; Matache, Gheorghe ; Paraschiv, Alexandru ; Frigioescu, Tiberius Florian ; Badea, Teodor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ac2b221e3166203d332085e4ac0d7152c68586c45bd1d2a70fdfef1a88739d4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Advanced manufacturing technologies</topic><topic>Alloys</topic><topic>Anisotropy</topic><topic>Cooling</topic><topic>Discount coupons</topic><topic>Heat treating</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Raw materials</topic><topic>Room temperature</topic><topic>Scanning</topic><topic>Simulation</topic><topic>Tensile properties</topic><topic>Tensile tests</topic><topic>Vertical orientation</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Condruz, Mihaela Raluca</creatorcontrib><creatorcontrib>Matache, Gheorghe</creatorcontrib><creatorcontrib>Paraschiv, Alexandru</creatorcontrib><creatorcontrib>Frigioescu, Tiberius Florian</creatorcontrib><creatorcontrib>Badea, Teodor</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Condruz, Mihaela Raluca</au><au>Matache, Gheorghe</au><au>Paraschiv, Alexandru</au><au>Frigioescu, Tiberius Florian</au><au>Badea, Teodor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and Tensile Properties Anisotropy of Selective Laser Melting Manufactured IN 625</atitle><jtitle>Materials</jtitle><date>2020-10-28</date><risdate>2020</risdate><volume>13</volume><issue>21</issue><spage>4829</spage><pages>4829-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The present study was focused on the assessment of microstructural anisotropy of IN 625 manufactured by selective laser melting (SLM) and its influence on the material’s room temperature tensile properties. Microstructural anisotropy was assessed based on computational and experimental investigations. Tensile specimens were manufactured using four building orientations (along Z, X, Y-axis, and tilted at 45° in the XZ plane) and three different scanning strategies (90°, 67°, and 45°). The simulation of microstructure development in specimens built along the Z-axis, applying all three scanning strategies, showed that the as-built microstructure is strongly textured and is influenced by the scanning strategy. The 45° scanning strategy induced the highest microstructural texture from all scanning strategies used. The monotonic tensile test results highlighted that the material exhibits significant anisotropic properties, depending on both the specimen orientation and the scanning strategy. Regardless of the scanning strategy used, the lowest mechanical performances of IN 625, in terms of strength values, were recorded for specimens built in the vertical position, as compared with all the other orientations.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33126747</pmid><doi>10.3390/ma13214829</doi><orcidid>https://orcid.org/0000-0002-6663-3420</orcidid><orcidid>https://orcid.org/0000-0002-1768-4491</orcidid><orcidid>https://orcid.org/0000-0002-7772-1207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-10, Vol.13 (21), p.4829
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7663131
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Additive manufacturing
Advanced manufacturing technologies
Alloys
Anisotropy
Cooling
Discount coupons
Heat treating
Laser beam melting
Lasers
Mechanical properties
Microscopy
Microstructure
Morphology
Raw materials
Room temperature
Scanning
Simulation
Tensile properties
Tensile tests
Vertical orientation
Yield stress
title Microstructural and Tensile Properties Anisotropy of Selective Laser Melting Manufactured IN 625
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20Tensile%20Properties%20Anisotropy%20of%20Selective%20Laser%20Melting%20Manufactured%20IN%20625&rft.jtitle=Materials&rft.au=Condruz,%20Mihaela%20Raluca&rft.date=2020-10-28&rft.volume=13&rft.issue=21&rft.spage=4829&rft.pages=4829-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13214829&rft_dat=%3Cproquest_pubme%3E2548722660%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548722660&rft_id=info:pmid/33126747&rfr_iscdi=true