Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway
There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo tre...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-10, Vol.21 (21), p.7931 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 7931 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Eisa, Nada H Reddy, Sakamuri V Elmansi, Ahmed M Kondrikova, Galina Kondrikov, Dmitry Shi, Xing-Ming Novince, Chad M Hamrick, Mark W McGee-Lawrence, Meghan E Isales, Carlos M Fulzele, Sadanand Hill, William D |
description | There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis. |
doi_str_mv | 10.3390/ijms21217931 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7662708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548650128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-e6a300f7cd39669dcb69ca762d3263b0d9dfcc258d3e4b8a5c734293943eb1c33</originalsourceid><addsrcrecordid>eNpVkdFLIzEQh8OhqKe-3bMEfHXvksxutnkRinhnsaiId68hm0zblDapSVbZ__4qetJ7moH5-M0PPkK-cfYdQLEffrnOggveKuBfyBGvhagYk-3ezn5Ivua8ZEyAaNQBOQTgvJYMjsjz7RD6hMEHpA8prmPBTB_Hd7fTahJcb9HR-1ww2pXJJc4xYPaZTgL940uKtBvo2Bb_YooPc1oWSMdpWNGbwaVoTepioI9ocVNiog-mLF7NcEL2Z2aV8fRjHpPfP6-frm6q6f2vydV4Wtmai1KhNMDYrLUOlJTK2U4qa1opHAgJHXPKzawVzcgB1t3INLaFWihQNWDHLcAxuXzP3fTdGp3FUJJZ6U3ya5MGHY3X_1-CX-h5fNGtlKJlo23A-UdAis895qKXsU9h21mLph7JhnHxRl28UzbFnBPOPj9wpt8E6V1BW_xst9Un_M8I_AU0846L</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548650128</pqid></control><display><type>article</type><title>Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Eisa, Nada H ; Reddy, Sakamuri V ; Elmansi, Ahmed M ; Kondrikova, Galina ; Kondrikov, Dmitry ; Shi, Xing-Ming ; Novince, Chad M ; Hamrick, Mark W ; McGee-Lawrence, Meghan E ; Isales, Carlos M ; Fulzele, Sadanand ; Hill, William D</creator><creatorcontrib>Eisa, Nada H ; Reddy, Sakamuri V ; Elmansi, Ahmed M ; Kondrikova, Galina ; Kondrikov, Dmitry ; Shi, Xing-Ming ; Novince, Chad M ; Hamrick, Mark W ; McGee-Lawrence, Meghan E ; Isales, Carlos M ; Fulzele, Sadanand ; Hill, William D</creatorcontrib><description>There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21217931</identifier><identifier>PMID: 33114603</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Age ; Aging ; Animals ; Aromatic compounds ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biomedical materials ; Bone loss ; Bone marrow ; Bone resorption ; c-Fos protein ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Enzymes ; Fractures ; Gene expression ; Gene Expression Regulation - drug effects ; Homeostasis ; Hydrocarbons ; Hydroxyapatite ; Kynurenine - pharmacology ; Ligands ; Macrophages ; Metabolites ; Mice ; NFATC Transcription Factors - genetics ; NFATC Transcription Factors - metabolism ; Osteoclastogenesis ; Osteoclasts ; Osteogenesis ; Osteoporosis ; Proto-Oncogene Proteins c-fos - genetics ; Proto-Oncogene Proteins c-fos - metabolism ; RANK Ligand - pharmacology ; RAW 264.7 Cells ; Receptors, Aryl Hydrocarbon - genetics ; Receptors, Aryl Hydrocarbon - metabolism ; Receptors, Glutamate - metabolism ; Signal Transduction - drug effects ; siRNA ; Therapeutic targets ; TRANCE protein ; Transcription factors ; Tryptophan</subject><ispartof>International journal of molecular sciences, 2020-10, Vol.21 (21), p.7931</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-e6a300f7cd39669dcb69ca762d3263b0d9dfcc258d3e4b8a5c734293943eb1c33</citedby><cites>FETCH-LOGICAL-c412t-e6a300f7cd39669dcb69ca762d3263b0d9dfcc258d3e4b8a5c734293943eb1c33</cites><orcidid>0000-0002-4480-3484 ; 0000-0002-2728-5849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662708/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7662708/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33114603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisa, Nada H</creatorcontrib><creatorcontrib>Reddy, Sakamuri V</creatorcontrib><creatorcontrib>Elmansi, Ahmed M</creatorcontrib><creatorcontrib>Kondrikova, Galina</creatorcontrib><creatorcontrib>Kondrikov, Dmitry</creatorcontrib><creatorcontrib>Shi, Xing-Ming</creatorcontrib><creatorcontrib>Novince, Chad M</creatorcontrib><creatorcontrib>Hamrick, Mark W</creatorcontrib><creatorcontrib>McGee-Lawrence, Meghan E</creatorcontrib><creatorcontrib>Isales, Carlos M</creatorcontrib><creatorcontrib>Fulzele, Sadanand</creatorcontrib><creatorcontrib>Hill, William D</creatorcontrib><title>Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.</description><subject>Age</subject><subject>Aging</subject><subject>Animals</subject><subject>Aromatic compounds</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biomedical materials</subject><subject>Bone loss</subject><subject>Bone marrow</subject><subject>Bone resorption</subject><subject>c-Fos protein</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Enzymes</subject><subject>Fractures</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Homeostasis</subject><subject>Hydrocarbons</subject><subject>Hydroxyapatite</subject><subject>Kynurenine - pharmacology</subject><subject>Ligands</subject><subject>Macrophages</subject><subject>Metabolites</subject><subject>Mice</subject><subject>NFATC Transcription Factors - genetics</subject><subject>NFATC Transcription Factors - metabolism</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Proto-Oncogene Proteins c-fos - genetics</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>RANK Ligand - pharmacology</subject><subject>RAW 264.7 Cells</subject><subject>Receptors, Aryl Hydrocarbon - genetics</subject><subject>Receptors, Aryl Hydrocarbon - metabolism</subject><subject>Receptors, Glutamate - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>siRNA</subject><subject>Therapeutic targets</subject><subject>TRANCE protein</subject><subject>Transcription factors</subject><subject>Tryptophan</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkdFLIzEQh8OhqKe-3bMEfHXvksxutnkRinhnsaiId68hm0zblDapSVbZ__4qetJ7moH5-M0PPkK-cfYdQLEffrnOggveKuBfyBGvhagYk-3ezn5Ivua8ZEyAaNQBOQTgvJYMjsjz7RD6hMEHpA8prmPBTB_Hd7fTahJcb9HR-1ww2pXJJc4xYPaZTgL940uKtBvo2Bb_YooPc1oWSMdpWNGbwaVoTepioI9ocVNiog-mLF7NcEL2Z2aV8fRjHpPfP6-frm6q6f2vydV4Wtmai1KhNMDYrLUOlJTK2U4qa1opHAgJHXPKzawVzcgB1t3INLaFWihQNWDHLcAxuXzP3fTdGp3FUJJZ6U3ya5MGHY3X_1-CX-h5fNGtlKJlo23A-UdAis895qKXsU9h21mLph7JhnHxRl28UzbFnBPOPj9wpt8E6V1BW_xst9Un_M8I_AU0846L</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Eisa, Nada H</creator><creator>Reddy, Sakamuri V</creator><creator>Elmansi, Ahmed M</creator><creator>Kondrikova, Galina</creator><creator>Kondrikov, Dmitry</creator><creator>Shi, Xing-Ming</creator><creator>Novince, Chad M</creator><creator>Hamrick, Mark W</creator><creator>McGee-Lawrence, Meghan E</creator><creator>Isales, Carlos M</creator><creator>Fulzele, Sadanand</creator><creator>Hill, William D</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4480-3484</orcidid><orcidid>https://orcid.org/0000-0002-2728-5849</orcidid></search><sort><creationdate>20201026</creationdate><title>Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway</title><author>Eisa, Nada H ; Reddy, Sakamuri V ; Elmansi, Ahmed M ; Kondrikova, Galina ; Kondrikov, Dmitry ; Shi, Xing-Ming ; Novince, Chad M ; Hamrick, Mark W ; McGee-Lawrence, Meghan E ; Isales, Carlos M ; Fulzele, Sadanand ; Hill, William D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-e6a300f7cd39669dcb69ca762d3263b0d9dfcc258d3e4b8a5c734293943eb1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Aging</topic><topic>Animals</topic><topic>Aromatic compounds</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biomedical materials</topic><topic>Bone loss</topic><topic>Bone marrow</topic><topic>Bone resorption</topic><topic>c-Fos protein</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Enzymes</topic><topic>Fractures</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Homeostasis</topic><topic>Hydrocarbons</topic><topic>Hydroxyapatite</topic><topic>Kynurenine - pharmacology</topic><topic>Ligands</topic><topic>Macrophages</topic><topic>Metabolites</topic><topic>Mice</topic><topic>NFATC Transcription Factors - genetics</topic><topic>NFATC Transcription Factors - metabolism</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Proto-Oncogene Proteins c-fos - genetics</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>RANK Ligand - pharmacology</topic><topic>RAW 264.7 Cells</topic><topic>Receptors, Aryl Hydrocarbon - genetics</topic><topic>Receptors, Aryl Hydrocarbon - metabolism</topic><topic>Receptors, Glutamate - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>siRNA</topic><topic>Therapeutic targets</topic><topic>TRANCE protein</topic><topic>Transcription factors</topic><topic>Tryptophan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisa, Nada H</creatorcontrib><creatorcontrib>Reddy, Sakamuri V</creatorcontrib><creatorcontrib>Elmansi, Ahmed M</creatorcontrib><creatorcontrib>Kondrikova, Galina</creatorcontrib><creatorcontrib>Kondrikov, Dmitry</creatorcontrib><creatorcontrib>Shi, Xing-Ming</creatorcontrib><creatorcontrib>Novince, Chad M</creatorcontrib><creatorcontrib>Hamrick, Mark W</creatorcontrib><creatorcontrib>McGee-Lawrence, Meghan E</creatorcontrib><creatorcontrib>Isales, Carlos M</creatorcontrib><creatorcontrib>Fulzele, Sadanand</creatorcontrib><creatorcontrib>Hill, William D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisa, Nada H</au><au>Reddy, Sakamuri V</au><au>Elmansi, Ahmed M</au><au>Kondrikova, Galina</au><au>Kondrikov, Dmitry</au><au>Shi, Xing-Ming</au><au>Novince, Chad M</au><au>Hamrick, Mark W</au><au>McGee-Lawrence, Meghan E</au><au>Isales, Carlos M</au><au>Fulzele, Sadanand</au><au>Hill, William D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-10-26</date><risdate>2020</risdate><volume>21</volume><issue>21</issue><spage>7931</spage><pages>7931-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>There is increasing evidence of the involvement of the tryptophan metabolite kynurenine (KYN) in disrupting osteogenesis and contributing to aging-related bone loss. Here, we show that KYN has an effect on bone resorption by increasing osteoclastogenesis. We have previously reported that in vivo treatment with KYN significantly increased osteoclast number lining bone surfaces. Here, we report the direct effect of KYN on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in Raw 264.7 macrophage cells, and we propose a potential mechanism for these KYN-mediated effects. We show that KYN/RANKL treatment results in enhancement of RANKL-induced osteoclast differentiation. KYN drives upregulation and activation of the key osteoclast transcription factors, c-fos and NFATc1 resulting in an increase in the number of multinucleated TRAP+ osteoclasts, and in hydroxyapatite bone resorptive activity. Mechanistically, the KYN receptor, aryl hydrocarbon receptor (AhR), plays an important role in the induction of osteoclastogenesis. We show that blocking AhR signaling using an AhR antagonist, or AhR siRNA, downregulates the KYN/RANKL-mediated increase in c-fos and NFATc1 and inhibits the formation of multinucleated TRAP + osteoclasts. Altogether, this work highlights that the novelty of the KYN and AhR pathways might have a potential role in helping to regulate osteoclast function with age and supports pursuing additional research to determine if they are potential therapeutic targets for the prevention or treatment of osteoporosis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33114603</pmid><doi>10.3390/ijms21217931</doi><orcidid>https://orcid.org/0000-0002-4480-3484</orcidid><orcidid>https://orcid.org/0000-0002-2728-5849</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-10, Vol.21 (21), p.7931 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7662708 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Age Aging Animals Aromatic compounds Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Biomedical materials Bone loss Bone marrow Bone resorption c-Fos protein Cell Differentiation - drug effects Cell Proliferation - drug effects Enzymes Fractures Gene expression Gene Expression Regulation - drug effects Homeostasis Hydrocarbons Hydroxyapatite Kynurenine - pharmacology Ligands Macrophages Metabolites Mice NFATC Transcription Factors - genetics NFATC Transcription Factors - metabolism Osteoclastogenesis Osteoclasts Osteogenesis Osteoporosis Proto-Oncogene Proteins c-fos - genetics Proto-Oncogene Proteins c-fos - metabolism RANK Ligand - pharmacology RAW 264.7 Cells Receptors, Aryl Hydrocarbon - genetics Receptors, Aryl Hydrocarbon - metabolism Receptors, Glutamate - metabolism Signal Transduction - drug effects siRNA Therapeutic targets TRANCE protein Transcription factors Tryptophan |
title | Kynurenine Promotes RANKL-Induced Osteoclastogenesis In Vitro by Activating the Aryl Hydrocarbon Receptor Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kynurenine%20Promotes%20RANKL-Induced%20Osteoclastogenesis%20In%20Vitro%20by%20Activating%20the%20Aryl%20Hydrocarbon%20Receptor%20Pathway&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Eisa,%20Nada%20H&rft.date=2020-10-26&rft.volume=21&rft.issue=21&rft.spage=7931&rft.pages=7931-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21217931&rft_dat=%3Cproquest_pubme%3E2548650128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548650128&rft_id=info:pmid/33114603&rfr_iscdi=true |