Partial synchronisation of glycolytic oscillations in yeast cell populations

The transition between synchronized and asynchronous behaviour of immobilized yeast cells of the strain Saccharomyces carlsbergensis was investigated by monitoring the autofluorescence of the coenzyme NADH. In populations of intermediate cell densities the individual cells remained oscillatory, wher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-11, Vol.10 (1), p.19714-19714, Article 19714
Hauptverfasser: Weber, André, Zuschratter, Werner, Hauser, Marcus J. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19714
container_issue 1
container_start_page 19714
container_title Scientific reports
container_volume 10
creator Weber, André
Zuschratter, Werner
Hauser, Marcus J. B.
description The transition between synchronized and asynchronous behaviour of immobilized yeast cells of the strain Saccharomyces carlsbergensis was investigated by monitoring the autofluorescence of the coenzyme NADH. In populations of intermediate cell densities the individual cells remained oscillatory, whereas on the level of the cell population both a partially synchronized and an asynchronous state were accessible for experimental studies. In the partially synchronized state, the mean oscillatory frequency was larger than that of the cells in the asynchronous state. This suggests that synchronisation occurred due to entrainment by the cells that oscillated more rapidly. This is typical for synchronisation due to phase advancement. Furthermore, the synchronisation of the frequency of the glycolytic oscillations preceded the synchronisation of their phases. However, the cells did not synchronize completely, as the distribution of the oscillatory frequencies only narrowed but did not collapse to a unique frequency. Cells belonging to spatially denser clusters showed a slightly enhanced local synchronisation during the episode of partial synchronisation. Neither the clusters nor a transition from partially synchronized glycolytic oscillations to travelling glycolytic waves did substantially affect the degree of partial synchronisation. Chimera states, i.e., the coexistence of a synchronized and an asynchronous part of the population, could not be found.
doi_str_mv 10.1038/s41598-020-76242-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7661732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460770611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-908d23bca9e9f62c7a92ff58517ca8e4536988fb84ac85f12e9f24575cc6778e3</originalsourceid><addsrcrecordid>eNp9kU9LXDEUxUOxVLF-gS7Kg27cPJvc_N8IRbQWBtpFuw6ZmDdGMsmYvCe8b2_GmVrrwmwSOL97bg4HoU8EnxFM1dfKCNeqx4B7KYBBr96hI8CM90ABDl68D9FJrXe4HQ6aEf0BHVJKFKNcHaHFL1vGYGNX5-RuS06h2jHk1OWhW8XZ5TiPwXW5uhDjk1K7kLrZ2zp2zsfYbfJm2isf0fvBxupP9vcx-nN1-fviul_8_P7j4tuidxzD2GusboAundVeDwKctBqGgStOpLPKM06FVmpYKmad4gOBhgHjkjsnpFSeHqPzne9mWq79jfNpLDaaTQlrW2aTbTD_KyncmlV-MFIIIik0g9O9Qcn3k6-jWYe6TWOTz1M1wASWEgtCGvrlFXqXp5JaPAMcUw6ca_0mxSThAjO6pWBHuZJrLX54_jLBZtuq2bVqWqvmqVWj2tDnl2GfR_522AC6A2qT0sqXf7vfsH0E9jatpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471560439</pqid></control><display><type>article</type><title>Partial synchronisation of glycolytic oscillations in yeast cell populations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Weber, André ; Zuschratter, Werner ; Hauser, Marcus J. B.</creator><creatorcontrib>Weber, André ; Zuschratter, Werner ; Hauser, Marcus J. B.</creatorcontrib><description>The transition between synchronized and asynchronous behaviour of immobilized yeast cells of the strain Saccharomyces carlsbergensis was investigated by monitoring the autofluorescence of the coenzyme NADH. In populations of intermediate cell densities the individual cells remained oscillatory, whereas on the level of the cell population both a partially synchronized and an asynchronous state were accessible for experimental studies. In the partially synchronized state, the mean oscillatory frequency was larger than that of the cells in the asynchronous state. This suggests that synchronisation occurred due to entrainment by the cells that oscillated more rapidly. This is typical for synchronisation due to phase advancement. Furthermore, the synchronisation of the frequency of the glycolytic oscillations preceded the synchronisation of their phases. However, the cells did not synchronize completely, as the distribution of the oscillatory frequencies only narrowed but did not collapse to a unique frequency. Cells belonging to spatially denser clusters showed a slightly enhanced local synchronisation during the episode of partial synchronisation. Neither the clusters nor a transition from partially synchronized glycolytic oscillations to travelling glycolytic waves did substantially affect the degree of partial synchronisation. Chimera states, i.e., the coexistence of a synchronized and an asynchronous part of the population, could not be found.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76242-8</identifier><identifier>PMID: 33184358</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57 ; 639/766 ; 639/766/530 ; 639/766/747 ; Entrainment ; Experiments ; Glucose - metabolism ; Glycolysis ; Humanities and Social Sciences ; Metabolism ; Models, Biological ; multidisciplinary ; NAD - metabolism ; NADH ; Neurosciences ; Oscillations ; Population ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction ; Yeast ; Yeasts</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.19714-19714, Article 19714</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-908d23bca9e9f62c7a92ff58517ca8e4536988fb84ac85f12e9f24575cc6778e3</citedby><cites>FETCH-LOGICAL-c502t-908d23bca9e9f62c7a92ff58517ca8e4536988fb84ac85f12e9f24575cc6778e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661732/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661732/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33184358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, André</creatorcontrib><creatorcontrib>Zuschratter, Werner</creatorcontrib><creatorcontrib>Hauser, Marcus J. B.</creatorcontrib><title>Partial synchronisation of glycolytic oscillations in yeast cell populations</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The transition between synchronized and asynchronous behaviour of immobilized yeast cells of the strain Saccharomyces carlsbergensis was investigated by monitoring the autofluorescence of the coenzyme NADH. In populations of intermediate cell densities the individual cells remained oscillatory, whereas on the level of the cell population both a partially synchronized and an asynchronous state were accessible for experimental studies. In the partially synchronized state, the mean oscillatory frequency was larger than that of the cells in the asynchronous state. This suggests that synchronisation occurred due to entrainment by the cells that oscillated more rapidly. This is typical for synchronisation due to phase advancement. Furthermore, the synchronisation of the frequency of the glycolytic oscillations preceded the synchronisation of their phases. However, the cells did not synchronize completely, as the distribution of the oscillatory frequencies only narrowed but did not collapse to a unique frequency. Cells belonging to spatially denser clusters showed a slightly enhanced local synchronisation during the episode of partial synchronisation. Neither the clusters nor a transition from partially synchronized glycolytic oscillations to travelling glycolytic waves did substantially affect the degree of partial synchronisation. Chimera states, i.e., the coexistence of a synchronized and an asynchronous part of the population, could not be found.</description><subject>631/57</subject><subject>639/766</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Entrainment</subject><subject>Experiments</subject><subject>Glucose - metabolism</subject><subject>Glycolysis</subject><subject>Humanities and Social Sciences</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>Neurosciences</subject><subject>Oscillations</subject><subject>Population</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9LXDEUxUOxVLF-gS7Kg27cPJvc_N8IRbQWBtpFuw6ZmDdGMsmYvCe8b2_GmVrrwmwSOL97bg4HoU8EnxFM1dfKCNeqx4B7KYBBr96hI8CM90ABDl68D9FJrXe4HQ6aEf0BHVJKFKNcHaHFL1vGYGNX5-RuS06h2jHk1OWhW8XZ5TiPwXW5uhDjk1K7kLrZ2zp2zsfYbfJm2isf0fvBxupP9vcx-nN1-fviul_8_P7j4tuidxzD2GusboAundVeDwKctBqGgStOpLPKM06FVmpYKmad4gOBhgHjkjsnpFSeHqPzne9mWq79jfNpLDaaTQlrW2aTbTD_KyncmlV-MFIIIik0g9O9Qcn3k6-jWYe6TWOTz1M1wASWEgtCGvrlFXqXp5JaPAMcUw6ca_0mxSThAjO6pWBHuZJrLX54_jLBZtuq2bVqWqvmqVWj2tDnl2GfR_522AC6A2qT0sqXf7vfsH0E9jatpQ</recordid><startdate>20201112</startdate><enddate>20201112</enddate><creator>Weber, André</creator><creator>Zuschratter, Werner</creator><creator>Hauser, Marcus J. B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201112</creationdate><title>Partial synchronisation of glycolytic oscillations in yeast cell populations</title><author>Weber, André ; Zuschratter, Werner ; Hauser, Marcus J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-908d23bca9e9f62c7a92ff58517ca8e4536988fb84ac85f12e9f24575cc6778e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/57</topic><topic>639/766</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Entrainment</topic><topic>Experiments</topic><topic>Glucose - metabolism</topic><topic>Glycolysis</topic><topic>Humanities and Social Sciences</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>Neurosciences</topic><topic>Oscillations</topic><topic>Population</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, André</creatorcontrib><creatorcontrib>Zuschratter, Werner</creatorcontrib><creatorcontrib>Hauser, Marcus J. B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, André</au><au>Zuschratter, Werner</au><au>Hauser, Marcus J. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial synchronisation of glycolytic oscillations in yeast cell populations</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-12</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>19714</spage><epage>19714</epage><pages>19714-19714</pages><artnum>19714</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The transition between synchronized and asynchronous behaviour of immobilized yeast cells of the strain Saccharomyces carlsbergensis was investigated by monitoring the autofluorescence of the coenzyme NADH. In populations of intermediate cell densities the individual cells remained oscillatory, whereas on the level of the cell population both a partially synchronized and an asynchronous state were accessible for experimental studies. In the partially synchronized state, the mean oscillatory frequency was larger than that of the cells in the asynchronous state. This suggests that synchronisation occurred due to entrainment by the cells that oscillated more rapidly. This is typical for synchronisation due to phase advancement. Furthermore, the synchronisation of the frequency of the glycolytic oscillations preceded the synchronisation of their phases. However, the cells did not synchronize completely, as the distribution of the oscillatory frequencies only narrowed but did not collapse to a unique frequency. Cells belonging to spatially denser clusters showed a slightly enhanced local synchronisation during the episode of partial synchronisation. Neither the clusters nor a transition from partially synchronized glycolytic oscillations to travelling glycolytic waves did substantially affect the degree of partial synchronisation. Chimera states, i.e., the coexistence of a synchronized and an asynchronous part of the population, could not be found.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33184358</pmid><doi>10.1038/s41598-020-76242-8</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-11, Vol.10 (1), p.19714-19714, Article 19714
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7661732
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/57
639/766
639/766/530
639/766/747
Entrainment
Experiments
Glucose - metabolism
Glycolysis
Humanities and Social Sciences
Metabolism
Models, Biological
multidisciplinary
NAD - metabolism
NADH
Neurosciences
Oscillations
Population
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Science
Science (multidisciplinary)
Signal Transduction
Yeast
Yeasts
title Partial synchronisation of glycolytic oscillations in yeast cell populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20synchronisation%20of%20glycolytic%20oscillations%20in%20yeast%20cell%20populations&rft.jtitle=Scientific%20reports&rft.au=Weber,%20Andr%C3%A9&rft.date=2020-11-12&rft.volume=10&rft.issue=1&rft.spage=19714&rft.epage=19714&rft.pages=19714-19714&rft.artnum=19714&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76242-8&rft_dat=%3Cproquest_pubme%3E2460770611%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471560439&rft_id=info:pmid/33184358&rfr_iscdi=true