Adaptation by copy number variation increases insecticide resistance in the fall armyworm

Understanding the genetic basis of insecticide resistance is a key topic in agricultural ecology. The adaptive evolution of multi-copy detoxification genes has been interpreted as a cause of insecticide resistance, yet the same pattern can also be generated by the adaptation to host-plant defense to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-11, Vol.3 (1), p.664-664, Article 664
Hauptverfasser: Gimenez, Sylvie, Abdelgaffar, Heba, Goff, Gaelle Le, Hilliou, Frédérique, Blanco, Carlos A., Hänniger, Sabine, Bretaudeau, Anthony, Legeai, Fabrice, Nègre, Nicolas, Jurat-Fuentes, Juan Luis, d’Alençon, Emmanuelle, Nam, Kiwoong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 664
container_issue 1
container_start_page 664
container_title Communications biology
container_volume 3
creator Gimenez, Sylvie
Abdelgaffar, Heba
Goff, Gaelle Le
Hilliou, Frédérique
Blanco, Carlos A.
Hänniger, Sabine
Bretaudeau, Anthony
Legeai, Fabrice
Nègre, Nicolas
Jurat-Fuentes, Juan Luis
d’Alençon, Emmanuelle
Nam, Kiwoong
description Understanding the genetic basis of insecticide resistance is a key topic in agricultural ecology. The adaptive evolution of multi-copy detoxification genes has been interpreted as a cause of insecticide resistance, yet the same pattern can also be generated by the adaptation to host-plant defense toxins. In this study, we tested in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), if adaptation by copy number variation caused insecticide resistance in two geographically distinct populations with different levels of resistance and the two host-plant strains. We observed a significant allelic differentiation of genomic copy number variations between the two geographic populations, but not between host-plant strains. A locus with positively selected copy number variation included a CYP gene cluster. Toxicological tests supported a central role for CYP enzymes in deltamethrin resistance. Our results indicate that copy number variation of detoxification genes might be responsible for insecticide resistance in fall armyworm and that evolutionary forces causing insecticide resistance could be independent of host-plant adaptation. Sylvie Gimenez et al. compare adaptation by copy number variation in two geographically distinct populations of the fall armyworm and find a relationship between copy number variation and insecticide resistance. The authors perform toxicological tests to confirm a role of the CYP gene cluster in insecticide resistance and suggest that evolutionary forces causing insecticide resistance can be independent of host-plant adaptation.
doi_str_mv 10.1038/s42003-020-01382-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7661717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471560938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-17530dcebe2e74bf975a9df647236cc48f8f9e28deb6b5635a38ec685600e2ee3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAInGBQ2D8EX9ckFYVUKSVuMCBk-U4k66rxF7sZKv997iklNIDJ49nnnln7LeqXhJ4R4Cp95lTANYAhQYIU7QRT6pTyrRumOD06YP4pDrP-RoAiNZaMP68OmGMKM6JOq1-bHq7n-3sY6i7Y-3i_liHZeow1Qeb_FrwwSW0GXOJMrrZO99jnTD7PNvgsKTreYf1YMextmk63sQ0vaielXvG87vzrPr-6eO3i8tm-_Xzl4vNtnEtqLkhsmXQO-yQouTdoGVrdT8ILikTznE1qEEjVT12omsFay1T6IRqBUBpQXZWfVh190s3YVEKc7Kj2Sc_2XQ00XrzbyX4nbmKByOFIJLIIvB2Fdg9arvcbM1tDhiIlkp9IIV9czcsxZ8L5tlMPjscRxswLtlQLkBKAgoK-voReh2XFMpXFEqSsr9mqlB0pVyKOScc7jcgYG6NNqvRphhtfhttRGl69fDJ9y1_bC0AW4FcSuEK09_Z_5H9BVl9tDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471560938</pqid></control><display><type>article</type><title>Adaptation by copy number variation increases insecticide resistance in the fall armyworm</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Gimenez, Sylvie ; Abdelgaffar, Heba ; Goff, Gaelle Le ; Hilliou, Frédérique ; Blanco, Carlos A. ; Hänniger, Sabine ; Bretaudeau, Anthony ; Legeai, Fabrice ; Nègre, Nicolas ; Jurat-Fuentes, Juan Luis ; d’Alençon, Emmanuelle ; Nam, Kiwoong</creator><creatorcontrib>Gimenez, Sylvie ; Abdelgaffar, Heba ; Goff, Gaelle Le ; Hilliou, Frédérique ; Blanco, Carlos A. ; Hänniger, Sabine ; Bretaudeau, Anthony ; Legeai, Fabrice ; Nègre, Nicolas ; Jurat-Fuentes, Juan Luis ; d’Alençon, Emmanuelle ; Nam, Kiwoong</creatorcontrib><description>Understanding the genetic basis of insecticide resistance is a key topic in agricultural ecology. The adaptive evolution of multi-copy detoxification genes has been interpreted as a cause of insecticide resistance, yet the same pattern can also be generated by the adaptation to host-plant defense toxins. In this study, we tested in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), if adaptation by copy number variation caused insecticide resistance in two geographically distinct populations with different levels of resistance and the two host-plant strains. We observed a significant allelic differentiation of genomic copy number variations between the two geographic populations, but not between host-plant strains. A locus with positively selected copy number variation included a CYP gene cluster. Toxicological tests supported a central role for CYP enzymes in deltamethrin resistance. Our results indicate that copy number variation of detoxification genes might be responsible for insecticide resistance in fall armyworm and that evolutionary forces causing insecticide resistance could be independent of host-plant adaptation. Sylvie Gimenez et al. compare adaptation by copy number variation in two geographically distinct populations of the fall armyworm and find a relationship between copy number variation and insecticide resistance. The authors perform toxicological tests to confirm a role of the CYP gene cluster in insecticide resistance and suggest that evolutionary forces causing insecticide resistance can be independent of host-plant adaptation.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-01382-6</identifier><identifier>PMID: 33184418</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/22 ; 45/23 ; 631/181/2474 ; 631/181/457/649/2157 ; Adaptation ; Animals ; Bioinformatics ; Biology ; Biomedical and Life Sciences ; Computer Science ; Copy number ; CYP gene ; Cytochrome P-450 Enzyme System - genetics ; Deltamethrin ; Detoxification ; DNA Copy Number Variations - genetics ; Evolution &amp; development ; Evolutionary genetics ; Female ; Genes ; Genome, Insect - genetics ; Host plants ; Insecticide Resistance - genetics ; Insecticides ; Insecticides - pharmacology ; Life Sciences ; Nitriles - pharmacology ; Pesticide resistance ; Pyrethrins - pharmacology ; Spodoptera - drug effects ; Spodoptera - genetics ; Spodoptera frugiperda</subject><ispartof>Communications biology, 2020-11, Vol.3 (1), p.664-664, Article 664</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-17530dcebe2e74bf975a9df647236cc48f8f9e28deb6b5635a38ec685600e2ee3</citedby><cites>FETCH-LOGICAL-c508t-17530dcebe2e74bf975a9df647236cc48f8f9e28deb6b5635a38ec685600e2ee3</cites><orcidid>0000-0001-8758-3568 ; 0000-0001-8994-0119 ; 0000-0003-2547-8302 ; 0000-0003-0914-2470 ; 0000-0001-9727-3416 ; 0000-0003-3194-8673 ; 0000-0002-6472-4839 ; 0000-0002-8945-1814 ; 0000-0001-6187-3057 ; 0000-0002-3020-2987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661717/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7661717/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33184418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-03065279$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gimenez, Sylvie</creatorcontrib><creatorcontrib>Abdelgaffar, Heba</creatorcontrib><creatorcontrib>Goff, Gaelle Le</creatorcontrib><creatorcontrib>Hilliou, Frédérique</creatorcontrib><creatorcontrib>Blanco, Carlos A.</creatorcontrib><creatorcontrib>Hänniger, Sabine</creatorcontrib><creatorcontrib>Bretaudeau, Anthony</creatorcontrib><creatorcontrib>Legeai, Fabrice</creatorcontrib><creatorcontrib>Nègre, Nicolas</creatorcontrib><creatorcontrib>Jurat-Fuentes, Juan Luis</creatorcontrib><creatorcontrib>d’Alençon, Emmanuelle</creatorcontrib><creatorcontrib>Nam, Kiwoong</creatorcontrib><title>Adaptation by copy number variation increases insecticide resistance in the fall armyworm</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Understanding the genetic basis of insecticide resistance is a key topic in agricultural ecology. The adaptive evolution of multi-copy detoxification genes has been interpreted as a cause of insecticide resistance, yet the same pattern can also be generated by the adaptation to host-plant defense toxins. In this study, we tested in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), if adaptation by copy number variation caused insecticide resistance in two geographically distinct populations with different levels of resistance and the two host-plant strains. We observed a significant allelic differentiation of genomic copy number variations between the two geographic populations, but not between host-plant strains. A locus with positively selected copy number variation included a CYP gene cluster. Toxicological tests supported a central role for CYP enzymes in deltamethrin resistance. Our results indicate that copy number variation of detoxification genes might be responsible for insecticide resistance in fall armyworm and that evolutionary forces causing insecticide resistance could be independent of host-plant adaptation. Sylvie Gimenez et al. compare adaptation by copy number variation in two geographically distinct populations of the fall armyworm and find a relationship between copy number variation and insecticide resistance. The authors perform toxicological tests to confirm a role of the CYP gene cluster in insecticide resistance and suggest that evolutionary forces causing insecticide resistance can be independent of host-plant adaptation.</description><subject>45</subject><subject>45/22</subject><subject>45/23</subject><subject>631/181/2474</subject><subject>631/181/457/649/2157</subject><subject>Adaptation</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Computer Science</subject><subject>Copy number</subject><subject>CYP gene</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Deltamethrin</subject><subject>Detoxification</subject><subject>DNA Copy Number Variations - genetics</subject><subject>Evolution &amp; development</subject><subject>Evolutionary genetics</subject><subject>Female</subject><subject>Genes</subject><subject>Genome, Insect - genetics</subject><subject>Host plants</subject><subject>Insecticide Resistance - genetics</subject><subject>Insecticides</subject><subject>Insecticides - pharmacology</subject><subject>Life Sciences</subject><subject>Nitriles - pharmacology</subject><subject>Pesticide resistance</subject><subject>Pyrethrins - pharmacology</subject><subject>Spodoptera - drug effects</subject><subject>Spodoptera - genetics</subject><subject>Spodoptera frugiperda</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAInGBQ2D8EX9ckFYVUKSVuMCBk-U4k66rxF7sZKv997iklNIDJ49nnnln7LeqXhJ4R4Cp95lTANYAhQYIU7QRT6pTyrRumOD06YP4pDrP-RoAiNZaMP68OmGMKM6JOq1-bHq7n-3sY6i7Y-3i_liHZeow1Qeb_FrwwSW0GXOJMrrZO99jnTD7PNvgsKTreYf1YMextmk63sQ0vaielXvG87vzrPr-6eO3i8tm-_Xzl4vNtnEtqLkhsmXQO-yQouTdoGVrdT8ILikTznE1qEEjVT12omsFay1T6IRqBUBpQXZWfVh190s3YVEKc7Kj2Sc_2XQ00XrzbyX4nbmKByOFIJLIIvB2Fdg9arvcbM1tDhiIlkp9IIV9czcsxZ8L5tlMPjscRxswLtlQLkBKAgoK-voReh2XFMpXFEqSsr9mqlB0pVyKOScc7jcgYG6NNqvRphhtfhttRGl69fDJ9y1_bC0AW4FcSuEK09_Z_5H9BVl9tDA</recordid><startdate>20201112</startdate><enddate>20201112</enddate><creator>Gimenez, Sylvie</creator><creator>Abdelgaffar, Heba</creator><creator>Goff, Gaelle Le</creator><creator>Hilliou, Frédérique</creator><creator>Blanco, Carlos A.</creator><creator>Hänniger, Sabine</creator><creator>Bretaudeau, Anthony</creator><creator>Legeai, Fabrice</creator><creator>Nègre, Nicolas</creator><creator>Jurat-Fuentes, Juan Luis</creator><creator>d’Alençon, Emmanuelle</creator><creator>Nam, Kiwoong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8758-3568</orcidid><orcidid>https://orcid.org/0000-0001-8994-0119</orcidid><orcidid>https://orcid.org/0000-0003-2547-8302</orcidid><orcidid>https://orcid.org/0000-0003-0914-2470</orcidid><orcidid>https://orcid.org/0000-0001-9727-3416</orcidid><orcidid>https://orcid.org/0000-0003-3194-8673</orcidid><orcidid>https://orcid.org/0000-0002-6472-4839</orcidid><orcidid>https://orcid.org/0000-0002-8945-1814</orcidid><orcidid>https://orcid.org/0000-0001-6187-3057</orcidid><orcidid>https://orcid.org/0000-0002-3020-2987</orcidid></search><sort><creationdate>20201112</creationdate><title>Adaptation by copy number variation increases insecticide resistance in the fall armyworm</title><author>Gimenez, Sylvie ; Abdelgaffar, Heba ; Goff, Gaelle Le ; Hilliou, Frédérique ; Blanco, Carlos A. ; Hänniger, Sabine ; Bretaudeau, Anthony ; Legeai, Fabrice ; Nègre, Nicolas ; Jurat-Fuentes, Juan Luis ; d’Alençon, Emmanuelle ; Nam, Kiwoong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-17530dcebe2e74bf975a9df647236cc48f8f9e28deb6b5635a38ec685600e2ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45</topic><topic>45/22</topic><topic>45/23</topic><topic>631/181/2474</topic><topic>631/181/457/649/2157</topic><topic>Adaptation</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Computer Science</topic><topic>Copy number</topic><topic>CYP gene</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Deltamethrin</topic><topic>Detoxification</topic><topic>DNA Copy Number Variations - genetics</topic><topic>Evolution &amp; development</topic><topic>Evolutionary genetics</topic><topic>Female</topic><topic>Genes</topic><topic>Genome, Insect - genetics</topic><topic>Host plants</topic><topic>Insecticide Resistance - genetics</topic><topic>Insecticides</topic><topic>Insecticides - pharmacology</topic><topic>Life Sciences</topic><topic>Nitriles - pharmacology</topic><topic>Pesticide resistance</topic><topic>Pyrethrins - pharmacology</topic><topic>Spodoptera - drug effects</topic><topic>Spodoptera - genetics</topic><topic>Spodoptera frugiperda</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gimenez, Sylvie</creatorcontrib><creatorcontrib>Abdelgaffar, Heba</creatorcontrib><creatorcontrib>Goff, Gaelle Le</creatorcontrib><creatorcontrib>Hilliou, Frédérique</creatorcontrib><creatorcontrib>Blanco, Carlos A.</creatorcontrib><creatorcontrib>Hänniger, Sabine</creatorcontrib><creatorcontrib>Bretaudeau, Anthony</creatorcontrib><creatorcontrib>Legeai, Fabrice</creatorcontrib><creatorcontrib>Nègre, Nicolas</creatorcontrib><creatorcontrib>Jurat-Fuentes, Juan Luis</creatorcontrib><creatorcontrib>d’Alençon, Emmanuelle</creatorcontrib><creatorcontrib>Nam, Kiwoong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gimenez, Sylvie</au><au>Abdelgaffar, Heba</au><au>Goff, Gaelle Le</au><au>Hilliou, Frédérique</au><au>Blanco, Carlos A.</au><au>Hänniger, Sabine</au><au>Bretaudeau, Anthony</au><au>Legeai, Fabrice</au><au>Nègre, Nicolas</au><au>Jurat-Fuentes, Juan Luis</au><au>d’Alençon, Emmanuelle</au><au>Nam, Kiwoong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation by copy number variation increases insecticide resistance in the fall armyworm</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-11-12</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>664</spage><epage>664</epage><pages>664-664</pages><artnum>664</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Understanding the genetic basis of insecticide resistance is a key topic in agricultural ecology. The adaptive evolution of multi-copy detoxification genes has been interpreted as a cause of insecticide resistance, yet the same pattern can also be generated by the adaptation to host-plant defense toxins. In this study, we tested in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), if adaptation by copy number variation caused insecticide resistance in two geographically distinct populations with different levels of resistance and the two host-plant strains. We observed a significant allelic differentiation of genomic copy number variations between the two geographic populations, but not between host-plant strains. A locus with positively selected copy number variation included a CYP gene cluster. Toxicological tests supported a central role for CYP enzymes in deltamethrin resistance. Our results indicate that copy number variation of detoxification genes might be responsible for insecticide resistance in fall armyworm and that evolutionary forces causing insecticide resistance could be independent of host-plant adaptation. Sylvie Gimenez et al. compare adaptation by copy number variation in two geographically distinct populations of the fall armyworm and find a relationship between copy number variation and insecticide resistance. The authors perform toxicological tests to confirm a role of the CYP gene cluster in insecticide resistance and suggest that evolutionary forces causing insecticide resistance can be independent of host-plant adaptation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33184418</pmid><doi>10.1038/s42003-020-01382-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8758-3568</orcidid><orcidid>https://orcid.org/0000-0001-8994-0119</orcidid><orcidid>https://orcid.org/0000-0003-2547-8302</orcidid><orcidid>https://orcid.org/0000-0003-0914-2470</orcidid><orcidid>https://orcid.org/0000-0001-9727-3416</orcidid><orcidid>https://orcid.org/0000-0003-3194-8673</orcidid><orcidid>https://orcid.org/0000-0002-6472-4839</orcidid><orcidid>https://orcid.org/0000-0002-8945-1814</orcidid><orcidid>https://orcid.org/0000-0001-6187-3057</orcidid><orcidid>https://orcid.org/0000-0002-3020-2987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2020-11, Vol.3 (1), p.664-664, Article 664
issn 2399-3642
2399-3642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7661717
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects 45
45/22
45/23
631/181/2474
631/181/457/649/2157
Adaptation
Animals
Bioinformatics
Biology
Biomedical and Life Sciences
Computer Science
Copy number
CYP gene
Cytochrome P-450 Enzyme System - genetics
Deltamethrin
Detoxification
DNA Copy Number Variations - genetics
Evolution & development
Evolutionary genetics
Female
Genes
Genome, Insect - genetics
Host plants
Insecticide Resistance - genetics
Insecticides
Insecticides - pharmacology
Life Sciences
Nitriles - pharmacology
Pesticide resistance
Pyrethrins - pharmacology
Spodoptera - drug effects
Spodoptera - genetics
Spodoptera frugiperda
title Adaptation by copy number variation increases insecticide resistance in the fall armyworm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20by%20copy%20number%20variation%20increases%20insecticide%20resistance%20in%20the%20fall%20armyworm&rft.jtitle=Communications%20biology&rft.au=Gimenez,%20Sylvie&rft.date=2020-11-12&rft.volume=3&rft.issue=1&rft.spage=664&rft.epage=664&rft.pages=664-664&rft.artnum=664&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-01382-6&rft_dat=%3Cproquest_pubme%3E2471560938%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471560938&rft_id=info:pmid/33184418&rfr_iscdi=true