Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience
We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rheg...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-11, Vol.10 (1), p.19528-19528, Article 19528 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19528 |
---|---|
container_issue | 1 |
container_start_page | 19528 |
container_title | Scientific reports |
container_volume | 10 |
creator | Antaki, Fares Kahwati, Ghofril Sebag, Julia Coussa, Razek Georges Fanous, Anthony Duval, Renaud Sebag, Mikael |
description | We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rhegmatogenous retinal detachment (RRD) by a single surgeon at a tertiary-care hospital between 2012 and 2019. Two ophthalmologists without coding experience used an interactive application in MATLAB to build and evaluate ML algorithms for the prediction of postoperative PVR using clinical data from the electronic health records. The clinical features associated with postoperative PVR were determined by univariate feature selection. The area under the curve (AUC) for predicting postoperative PVR was better for models that included pre-existing PVR as an input. The quadratic support vector machine (SVM) model built using all selected clinical features had an AUC of 0.90, a sensitivity of 63.0%, and a specificity of 97.8%. An optimized Naïve Bayes algorithm that did not include pre-existing PVR as an input feature had an AUC of 0.81, a sensitivity of 54.3%, and a specificity of 92.4%. In conclusion, the development of ML models for the prediction of PVR by ophthalmologists without coding experience is feasible. Input from a data scientist might still be needed to tackle class imbalance—a common challenge in ML classification using real-world clinical data. |
doi_str_mv | 10.1038/s41598-020-76665-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7658348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460084970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a38a5758c170cfb1daeb857150e210ea849547043fd32e81ac522cccfd9f674a3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSNERavSF2CBIrFhE_Bv7GyQUFVapEqwgLXlcW4mrhw72M7APEDfG6dTSmFRb2zpfPf4XJ2qeoXRO4yofJ8Y5p1sEEGNaNuWN_RZdUIQ4w2hhDx_9D6uzlK6QeVw0jHcvaiOKcVCtJidVLdfI_TWZLuDego9OOu3dRjqOQZnB4j6TtnZHCFEyNaHWedxXy9pBfWSw6Qz9PWkzWg91A509Ku02ddhHvOo3RRc2NqUU_3T5jEsuTahXxH4NUO04A28rI4G7RKc3d-n1fdPF9_Or5rrL5efzz9eN4YJlhtNpeaCS4MFMsMG9xo2kgvMERCMQEvWcSYQo0NPCUisDSfEGDP03dAKpulp9eHgOy-bCXoDPkft1BztpONeBW3Vv4q3o9qGnRItl5TJYvD23iCGHwukrCabDDinPYQlKcJahEoMgQr65j_0JizRl_UKVTJz2ZGVIgfKxJBShOEhDEZqLVodilalaHVXtKJl6PXjNR5G_tRaAHoAUpH8FuLfv5-w_Q27MLiy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471558920</pqid></control><display><type>article</type><title>Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Antaki, Fares ; Kahwati, Ghofril ; Sebag, Julia ; Coussa, Razek Georges ; Fanous, Anthony ; Duval, Renaud ; Sebag, Mikael</creator><creatorcontrib>Antaki, Fares ; Kahwati, Ghofril ; Sebag, Julia ; Coussa, Razek Georges ; Fanous, Anthony ; Duval, Renaud ; Sebag, Mikael</creatorcontrib><description>We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rhegmatogenous retinal detachment (RRD) by a single surgeon at a tertiary-care hospital between 2012 and 2019. Two ophthalmologists without coding experience used an interactive application in MATLAB to build and evaluate ML algorithms for the prediction of postoperative PVR using clinical data from the electronic health records. The clinical features associated with postoperative PVR were determined by univariate feature selection. The area under the curve (AUC) for predicting postoperative PVR was better for models that included pre-existing PVR as an input. The quadratic support vector machine (SVM) model built using all selected clinical features had an AUC of 0.90, a sensitivity of 63.0%, and a specificity of 97.8%. An optimized Naïve Bayes algorithm that did not include pre-existing PVR as an input feature had an AUC of 0.81, a sensitivity of 54.3%, and a specificity of 92.4%. In conclusion, the development of ML models for the prediction of PVR by ophthalmologists without coding experience is feasible. Input from a data scientist might still be needed to tackle class imbalance—a common challenge in ML classification using real-world clinical data.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76665-3</identifier><identifier>PMID: 33177614</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/308/409 ; 692/499 ; 692/53/2423 ; Aged ; Algorithms ; Automation ; Bayesian analysis ; Diagnosis, Computer-Assisted ; Electronic medical records ; Female ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Machine Learning ; Male ; Medical personnel ; Middle Aged ; multidisciplinary ; Ophthalmologists ; Postoperative Complications - etiology ; Retinal Detachment - surgery ; Retrospective Studies ; Risk Factors ; Science ; Science (multidisciplinary) ; Vitrectomy - adverse effects ; Vitrectomy - methods ; Vitreoretinopathy, Proliferative - etiology</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.19528-19528, Article 19528</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a38a5758c170cfb1daeb857150e210ea849547043fd32e81ac522cccfd9f674a3</citedby><cites>FETCH-LOGICAL-c474t-a38a5758c170cfb1daeb857150e210ea849547043fd32e81ac522cccfd9f674a3</cites><orcidid>0000-0001-6679-7276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658348/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658348/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33177614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Antaki, Fares</creatorcontrib><creatorcontrib>Kahwati, Ghofril</creatorcontrib><creatorcontrib>Sebag, Julia</creatorcontrib><creatorcontrib>Coussa, Razek Georges</creatorcontrib><creatorcontrib>Fanous, Anthony</creatorcontrib><creatorcontrib>Duval, Renaud</creatorcontrib><creatorcontrib>Sebag, Mikael</creatorcontrib><title>Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rhegmatogenous retinal detachment (RRD) by a single surgeon at a tertiary-care hospital between 2012 and 2019. Two ophthalmologists without coding experience used an interactive application in MATLAB to build and evaluate ML algorithms for the prediction of postoperative PVR using clinical data from the electronic health records. The clinical features associated with postoperative PVR were determined by univariate feature selection. The area under the curve (AUC) for predicting postoperative PVR was better for models that included pre-existing PVR as an input. The quadratic support vector machine (SVM) model built using all selected clinical features had an AUC of 0.90, a sensitivity of 63.0%, and a specificity of 97.8%. An optimized Naïve Bayes algorithm that did not include pre-existing PVR as an input feature had an AUC of 0.81, a sensitivity of 54.3%, and a specificity of 92.4%. In conclusion, the development of ML models for the prediction of PVR by ophthalmologists without coding experience is feasible. Input from a data scientist might still be needed to tackle class imbalance—a common challenge in ML classification using real-world clinical data.</description><subject>692/308/409</subject><subject>692/499</subject><subject>692/53/2423</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Bayesian analysis</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Electronic medical records</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medical personnel</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Ophthalmologists</subject><subject>Postoperative Complications - etiology</subject><subject>Retinal Detachment - surgery</subject><subject>Retrospective Studies</subject><subject>Risk Factors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vitrectomy - adverse effects</subject><subject>Vitrectomy - methods</subject><subject>Vitreoretinopathy, Proliferative - etiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhSNERavSF2CBIrFhE_Bv7GyQUFVapEqwgLXlcW4mrhw72M7APEDfG6dTSmFRb2zpfPf4XJ2qeoXRO4yofJ8Y5p1sEEGNaNuWN_RZdUIQ4w2hhDx_9D6uzlK6QeVw0jHcvaiOKcVCtJidVLdfI_TWZLuDego9OOu3dRjqOQZnB4j6TtnZHCFEyNaHWedxXy9pBfWSw6Qz9PWkzWg91A509Ku02ddhHvOo3RRc2NqUU_3T5jEsuTahXxH4NUO04A28rI4G7RKc3d-n1fdPF9_Or5rrL5efzz9eN4YJlhtNpeaCS4MFMsMG9xo2kgvMERCMQEvWcSYQo0NPCUisDSfEGDP03dAKpulp9eHgOy-bCXoDPkft1BztpONeBW3Vv4q3o9qGnRItl5TJYvD23iCGHwukrCabDDinPYQlKcJahEoMgQr65j_0JizRl_UKVTJz2ZGVIgfKxJBShOEhDEZqLVodilalaHVXtKJl6PXjNR5G_tRaAHoAUpH8FuLfv5-w_Q27MLiy</recordid><startdate>20201111</startdate><enddate>20201111</enddate><creator>Antaki, Fares</creator><creator>Kahwati, Ghofril</creator><creator>Sebag, Julia</creator><creator>Coussa, Razek Georges</creator><creator>Fanous, Anthony</creator><creator>Duval, Renaud</creator><creator>Sebag, Mikael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6679-7276</orcidid></search><sort><creationdate>20201111</creationdate><title>Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience</title><author>Antaki, Fares ; Kahwati, Ghofril ; Sebag, Julia ; Coussa, Razek Georges ; Fanous, Anthony ; Duval, Renaud ; Sebag, Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a38a5758c170cfb1daeb857150e210ea849547043fd32e81ac522cccfd9f674a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/308/409</topic><topic>692/499</topic><topic>692/53/2423</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Bayesian analysis</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Electronic medical records</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medical personnel</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Ophthalmologists</topic><topic>Postoperative Complications - etiology</topic><topic>Retinal Detachment - surgery</topic><topic>Retrospective Studies</topic><topic>Risk Factors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vitrectomy - adverse effects</topic><topic>Vitrectomy - methods</topic><topic>Vitreoretinopathy, Proliferative - etiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antaki, Fares</creatorcontrib><creatorcontrib>Kahwati, Ghofril</creatorcontrib><creatorcontrib>Sebag, Julia</creatorcontrib><creatorcontrib>Coussa, Razek Georges</creatorcontrib><creatorcontrib>Fanous, Anthony</creatorcontrib><creatorcontrib>Duval, Renaud</creatorcontrib><creatorcontrib>Sebag, Mikael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antaki, Fares</au><au>Kahwati, Ghofril</au><au>Sebag, Julia</au><au>Coussa, Razek Georges</au><au>Fanous, Anthony</au><au>Duval, Renaud</au><au>Sebag, Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-11</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>19528</spage><epage>19528</epage><pages>19528-19528</pages><artnum>19528</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rhegmatogenous retinal detachment (RRD) by a single surgeon at a tertiary-care hospital between 2012 and 2019. Two ophthalmologists without coding experience used an interactive application in MATLAB to build and evaluate ML algorithms for the prediction of postoperative PVR using clinical data from the electronic health records. The clinical features associated with postoperative PVR were determined by univariate feature selection. The area under the curve (AUC) for predicting postoperative PVR was better for models that included pre-existing PVR as an input. The quadratic support vector machine (SVM) model built using all selected clinical features had an AUC of 0.90, a sensitivity of 63.0%, and a specificity of 97.8%. An optimized Naïve Bayes algorithm that did not include pre-existing PVR as an input feature had an AUC of 0.81, a sensitivity of 54.3%, and a specificity of 92.4%. In conclusion, the development of ML models for the prediction of PVR by ophthalmologists without coding experience is feasible. Input from a data scientist might still be needed to tackle class imbalance—a common challenge in ML classification using real-world clinical data.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33177614</pmid><doi>10.1038/s41598-020-76665-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6679-7276</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-11, Vol.10 (1), p.19528-19528, Article 19528 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7658348 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 692/308/409 692/499 692/53/2423 Aged Algorithms Automation Bayesian analysis Diagnosis, Computer-Assisted Electronic medical records Female Humanities and Social Sciences Humans Learning algorithms Machine Learning Male Medical personnel Middle Aged multidisciplinary Ophthalmologists Postoperative Complications - etiology Retinal Detachment - surgery Retrospective Studies Risk Factors Science Science (multidisciplinary) Vitrectomy - adverse effects Vitrectomy - methods Vitreoretinopathy, Proliferative - etiology |
title | Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modeling%20of%20proliferative%20vitreoretinopathy%20using%20automated%20machine%20learning%20by%20ophthalmologists%20without%20coding%20experience&rft.jtitle=Scientific%20reports&rft.au=Antaki,%20Fares&rft.date=2020-11-11&rft.volume=10&rft.issue=1&rft.spage=19528&rft.epage=19528&rft.pages=19528-19528&rft.artnum=19528&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76665-3&rft_dat=%3Cproquest_pubme%3E2460084970%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471558920&rft_id=info:pmid/33177614&rfr_iscdi=true |