Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience

We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rheg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-11, Vol.10 (1), p.19528-19528, Article 19528
Hauptverfasser: Antaki, Fares, Kahwati, Ghofril, Sebag, Julia, Coussa, Razek Georges, Fanous, Anthony, Duval, Renaud, Sebag, Mikael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19528
container_issue 1
container_start_page 19528
container_title Scientific reports
container_volume 10
creator Antaki, Fares
Kahwati, Ghofril
Sebag, Julia
Coussa, Razek Georges
Fanous, Anthony
Duval, Renaud
Sebag, Mikael
description We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rhegmatogenous retinal detachment (RRD) by a single surgeon at a tertiary-care hospital between 2012 and 2019. Two ophthalmologists without coding experience used an interactive application in MATLAB to build and evaluate ML algorithms for the prediction of postoperative PVR using clinical data from the electronic health records. The clinical features associated with postoperative PVR were determined by univariate feature selection. The area under the curve (AUC) for predicting postoperative PVR was better for models that included pre-existing PVR as an input. The quadratic support vector machine (SVM) model built using all selected clinical features had an AUC of 0.90, a sensitivity of 63.0%, and a specificity of 97.8%. An optimized Naïve Bayes algorithm that did not include pre-existing PVR as an input feature had an AUC of 0.81, a sensitivity of 54.3%, and a specificity of 92.4%. In conclusion, the development of ML models for the prediction of PVR by ophthalmologists without coding experience is feasible. Input from a data scientist might still be needed to tackle class imbalance—a common challenge in ML classification using real-world clinical data.
doi_str_mv 10.1038/s41598-020-76665-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7658348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460084970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a38a5758c170cfb1daeb857150e210ea849547043fd32e81ac522cccfd9f674a3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSNERavSF2CBIrFhE_Bv7GyQUFVapEqwgLXlcW4mrhw72M7APEDfG6dTSmFRb2zpfPf4XJ2qeoXRO4yofJ8Y5p1sEEGNaNuWN_RZdUIQ4w2hhDx_9D6uzlK6QeVw0jHcvaiOKcVCtJidVLdfI_TWZLuDego9OOu3dRjqOQZnB4j6TtnZHCFEyNaHWedxXy9pBfWSw6Qz9PWkzWg91A509Ku02ddhHvOo3RRc2NqUU_3T5jEsuTahXxH4NUO04A28rI4G7RKc3d-n1fdPF9_Or5rrL5efzz9eN4YJlhtNpeaCS4MFMsMG9xo2kgvMERCMQEvWcSYQo0NPCUisDSfEGDP03dAKpulp9eHgOy-bCXoDPkft1BztpONeBW3Vv4q3o9qGnRItl5TJYvD23iCGHwukrCabDDinPYQlKcJahEoMgQr65j_0JizRl_UKVTJz2ZGVIgfKxJBShOEhDEZqLVodilalaHVXtKJl6PXjNR5G_tRaAHoAUpH8FuLfv5-w_Q27MLiy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471558920</pqid></control><display><type>article</type><title>Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Antaki, Fares ; Kahwati, Ghofril ; Sebag, Julia ; Coussa, Razek Georges ; Fanous, Anthony ; Duval, Renaud ; Sebag, Mikael</creator><creatorcontrib>Antaki, Fares ; Kahwati, Ghofril ; Sebag, Julia ; Coussa, Razek Georges ; Fanous, Anthony ; Duval, Renaud ; Sebag, Mikael</creatorcontrib><description>We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rhegmatogenous retinal detachment (RRD) by a single surgeon at a tertiary-care hospital between 2012 and 2019. Two ophthalmologists without coding experience used an interactive application in MATLAB to build and evaluate ML algorithms for the prediction of postoperative PVR using clinical data from the electronic health records. The clinical features associated with postoperative PVR were determined by univariate feature selection. The area under the curve (AUC) for predicting postoperative PVR was better for models that included pre-existing PVR as an input. The quadratic support vector machine (SVM) model built using all selected clinical features had an AUC of 0.90, a sensitivity of 63.0%, and a specificity of 97.8%. An optimized Naïve Bayes algorithm that did not include pre-existing PVR as an input feature had an AUC of 0.81, a sensitivity of 54.3%, and a specificity of 92.4%. In conclusion, the development of ML models for the prediction of PVR by ophthalmologists without coding experience is feasible. Input from a data scientist might still be needed to tackle class imbalance—a common challenge in ML classification using real-world clinical data.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76665-3</identifier><identifier>PMID: 33177614</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/308/409 ; 692/499 ; 692/53/2423 ; Aged ; Algorithms ; Automation ; Bayesian analysis ; Diagnosis, Computer-Assisted ; Electronic medical records ; Female ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Machine Learning ; Male ; Medical personnel ; Middle Aged ; multidisciplinary ; Ophthalmologists ; Postoperative Complications - etiology ; Retinal Detachment - surgery ; Retrospective Studies ; Risk Factors ; Science ; Science (multidisciplinary) ; Vitrectomy - adverse effects ; Vitrectomy - methods ; Vitreoretinopathy, Proliferative - etiology</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.19528-19528, Article 19528</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a38a5758c170cfb1daeb857150e210ea849547043fd32e81ac522cccfd9f674a3</citedby><cites>FETCH-LOGICAL-c474t-a38a5758c170cfb1daeb857150e210ea849547043fd32e81ac522cccfd9f674a3</cites><orcidid>0000-0001-6679-7276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658348/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658348/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33177614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Antaki, Fares</creatorcontrib><creatorcontrib>Kahwati, Ghofril</creatorcontrib><creatorcontrib>Sebag, Julia</creatorcontrib><creatorcontrib>Coussa, Razek Georges</creatorcontrib><creatorcontrib>Fanous, Anthony</creatorcontrib><creatorcontrib>Duval, Renaud</creatorcontrib><creatorcontrib>Sebag, Mikael</creatorcontrib><title>Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rhegmatogenous retinal detachment (RRD) by a single surgeon at a tertiary-care hospital between 2012 and 2019. Two ophthalmologists without coding experience used an interactive application in MATLAB to build and evaluate ML algorithms for the prediction of postoperative PVR using clinical data from the electronic health records. The clinical features associated with postoperative PVR were determined by univariate feature selection. The area under the curve (AUC) for predicting postoperative PVR was better for models that included pre-existing PVR as an input. The quadratic support vector machine (SVM) model built using all selected clinical features had an AUC of 0.90, a sensitivity of 63.0%, and a specificity of 97.8%. An optimized Naïve Bayes algorithm that did not include pre-existing PVR as an input feature had an AUC of 0.81, a sensitivity of 54.3%, and a specificity of 92.4%. In conclusion, the development of ML models for the prediction of PVR by ophthalmologists without coding experience is feasible. Input from a data scientist might still be needed to tackle class imbalance—a common challenge in ML classification using real-world clinical data.</description><subject>692/308/409</subject><subject>692/499</subject><subject>692/53/2423</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Bayesian analysis</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Electronic medical records</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medical personnel</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Ophthalmologists</subject><subject>Postoperative Complications - etiology</subject><subject>Retinal Detachment - surgery</subject><subject>Retrospective Studies</subject><subject>Risk Factors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vitrectomy - adverse effects</subject><subject>Vitrectomy - methods</subject><subject>Vitreoretinopathy, Proliferative - etiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhSNERavSF2CBIrFhE_Bv7GyQUFVapEqwgLXlcW4mrhw72M7APEDfG6dTSmFRb2zpfPf4XJ2qeoXRO4yofJ8Y5p1sEEGNaNuWN_RZdUIQ4w2hhDx_9D6uzlK6QeVw0jHcvaiOKcVCtJidVLdfI_TWZLuDego9OOu3dRjqOQZnB4j6TtnZHCFEyNaHWedxXy9pBfWSw6Qz9PWkzWg91A509Ku02ddhHvOo3RRc2NqUU_3T5jEsuTahXxH4NUO04A28rI4G7RKc3d-n1fdPF9_Or5rrL5efzz9eN4YJlhtNpeaCS4MFMsMG9xo2kgvMERCMQEvWcSYQo0NPCUisDSfEGDP03dAKpulp9eHgOy-bCXoDPkft1BztpONeBW3Vv4q3o9qGnRItl5TJYvD23iCGHwukrCabDDinPYQlKcJahEoMgQr65j_0JizRl_UKVTJz2ZGVIgfKxJBShOEhDEZqLVodilalaHVXtKJl6PXjNR5G_tRaAHoAUpH8FuLfv5-w_Q27MLiy</recordid><startdate>20201111</startdate><enddate>20201111</enddate><creator>Antaki, Fares</creator><creator>Kahwati, Ghofril</creator><creator>Sebag, Julia</creator><creator>Coussa, Razek Georges</creator><creator>Fanous, Anthony</creator><creator>Duval, Renaud</creator><creator>Sebag, Mikael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6679-7276</orcidid></search><sort><creationdate>20201111</creationdate><title>Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience</title><author>Antaki, Fares ; Kahwati, Ghofril ; Sebag, Julia ; Coussa, Razek Georges ; Fanous, Anthony ; Duval, Renaud ; Sebag, Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a38a5758c170cfb1daeb857150e210ea849547043fd32e81ac522cccfd9f674a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/308/409</topic><topic>692/499</topic><topic>692/53/2423</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Bayesian analysis</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Electronic medical records</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medical personnel</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Ophthalmologists</topic><topic>Postoperative Complications - etiology</topic><topic>Retinal Detachment - surgery</topic><topic>Retrospective Studies</topic><topic>Risk Factors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vitrectomy - adverse effects</topic><topic>Vitrectomy - methods</topic><topic>Vitreoretinopathy, Proliferative - etiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antaki, Fares</creatorcontrib><creatorcontrib>Kahwati, Ghofril</creatorcontrib><creatorcontrib>Sebag, Julia</creatorcontrib><creatorcontrib>Coussa, Razek Georges</creatorcontrib><creatorcontrib>Fanous, Anthony</creatorcontrib><creatorcontrib>Duval, Renaud</creatorcontrib><creatorcontrib>Sebag, Mikael</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antaki, Fares</au><au>Kahwati, Ghofril</au><au>Sebag, Julia</au><au>Coussa, Razek Georges</au><au>Fanous, Anthony</au><au>Duval, Renaud</au><au>Sebag, Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-11</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>19528</spage><epage>19528</epage><pages>19528-19528</pages><artnum>19528</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We aimed to assess the feasibility of machine learning (ML) algorithm design to predict proliferative vitreoretinopathy (PVR) by ophthalmologists without coding experience using automated ML (AutoML). The study was a retrospective cohort study of 506 eyes who underwent pars plana vitrectomy for rhegmatogenous retinal detachment (RRD) by a single surgeon at a tertiary-care hospital between 2012 and 2019. Two ophthalmologists without coding experience used an interactive application in MATLAB to build and evaluate ML algorithms for the prediction of postoperative PVR using clinical data from the electronic health records. The clinical features associated with postoperative PVR were determined by univariate feature selection. The area under the curve (AUC) for predicting postoperative PVR was better for models that included pre-existing PVR as an input. The quadratic support vector machine (SVM) model built using all selected clinical features had an AUC of 0.90, a sensitivity of 63.0%, and a specificity of 97.8%. An optimized Naïve Bayes algorithm that did not include pre-existing PVR as an input feature had an AUC of 0.81, a sensitivity of 54.3%, and a specificity of 92.4%. In conclusion, the development of ML models for the prediction of PVR by ophthalmologists without coding experience is feasible. Input from a data scientist might still be needed to tackle class imbalance—a common challenge in ML classification using real-world clinical data.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33177614</pmid><doi>10.1038/s41598-020-76665-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6679-7276</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-11, Vol.10 (1), p.19528-19528, Article 19528
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7658348
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 692/308/409
692/499
692/53/2423
Aged
Algorithms
Automation
Bayesian analysis
Diagnosis, Computer-Assisted
Electronic medical records
Female
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Male
Medical personnel
Middle Aged
multidisciplinary
Ophthalmologists
Postoperative Complications - etiology
Retinal Detachment - surgery
Retrospective Studies
Risk Factors
Science
Science (multidisciplinary)
Vitrectomy - adverse effects
Vitrectomy - methods
Vitreoretinopathy, Proliferative - etiology
title Predictive modeling of proliferative vitreoretinopathy using automated machine learning by ophthalmologists without coding experience
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modeling%20of%20proliferative%20vitreoretinopathy%20using%20automated%20machine%20learning%20by%20ophthalmologists%20without%20coding%20experience&rft.jtitle=Scientific%20reports&rft.au=Antaki,%20Fares&rft.date=2020-11-11&rft.volume=10&rft.issue=1&rft.spage=19528&rft.epage=19528&rft.pages=19528-19528&rft.artnum=19528&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76665-3&rft_dat=%3Cproquest_pubme%3E2460084970%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471558920&rft_id=info:pmid/33177614&rfr_iscdi=true