Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil
We model and forecast the early evolution of the COVID-19 pandemic in Brazil using Brazilian recent data from February 25, 2020 to March 30, 2020. This early period accounts for unawareness of the epidemiological characteristics of the disease in a new territory, sub-notification of the real numbers...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-11, Vol.10 (1), p.19457, Article 19457 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 19457 |
container_title | Scientific reports |
container_volume | 10 |
creator | Bastos, Saulo B. Cajueiro, Daniel O. |
description | We model and forecast the early evolution of the COVID-19 pandemic in Brazil using Brazilian recent data from February 25, 2020 to March 30, 2020. This early period accounts for unawareness of the epidemiological characteristics of the disease in a new territory, sub-notification of the real numbers of infected people and the timely introduction of social distancing policies to flatten the spread of the disease. We use two variations of the SIR model and we include a parameter that comprises the effects of social distancing measures. Short and long term forecasts show that the social distancing policy imposed by the government is able to flatten the pattern of infection of the COVID-19. However, our results also show that if this policy does not last enough time, it is only able to shift the peak of infection into the future keeping the value of the peak in almost the same value. Furthermore, our long term simulations forecast the optimal date to end the policy. Finally, we show that the proportion of asymptomatic individuals affects the amplitude of the peak of symptomatic infected, suggesting that it is important to test the population. |
doi_str_mv | 10.1038/s41598-020-76257-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459626162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-814ec095633d4e9d4968ff853ab4ad72b4c3905c33619798f6f30087a3c1bfcd3</originalsourceid><addsrcrecordid>eNp9kUtPGzEUha0K1ETAH-iiGqkbNgN-PzZIJWoBKYgNrC3HYydGEzvYM5Hor68hlAILvLGv73eOfXUA-IbgCYJEnhaKmJItxLAVHDPRoi9giiFlLSYY7705T8BRKfewLoYVReormBCCBEFYTMHNdepcH-KyMbFrfMrOmjI81cPKNc7k_rFx29SPQ0ixSf75epa2oWuRajZV5NbBNiE259n8Cf0h2PemL-7oZT8Ad79_3c4u2_nNxdXs57y1TMqhlYg6CxXjhHTUqY4qLr2XjJgFNZ3AC2qJgswSwpESSnruCYRSGGLRwtuOHICzne9mXKxdZ10csun1Joe1yY86maDfd2JY6WXaasEZk4xVg-MXg5weRlcGvQ7Fur430aWxaEyZ4pgjjiv64wN6n8Yc63iVEogxwQivFN5RNqdSsvOvn0FQP0Wmd5HpGpl-jkyjKvr-doxXyb-AKkB2QKmtuHT5_9uf2P4FEDagrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471557536</pqid></control><display><type>article</type><title>Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Bastos, Saulo B. ; Cajueiro, Daniel O.</creator><creatorcontrib>Bastos, Saulo B. ; Cajueiro, Daniel O.</creatorcontrib><description>We model and forecast the early evolution of the COVID-19 pandemic in Brazil using Brazilian recent data from February 25, 2020 to March 30, 2020. This early period accounts for unawareness of the epidemiological characteristics of the disease in a new territory, sub-notification of the real numbers of infected people and the timely introduction of social distancing policies to flatten the spread of the disease. We use two variations of the SIR model and we include a parameter that comprises the effects of social distancing measures. Short and long term forecasts show that the social distancing policy imposed by the government is able to flatten the pattern of infection of the COVID-19. However, our results also show that if this policy does not last enough time, it is only able to shift the peak of infection into the future keeping the value of the peak in almost the same value. Furthermore, our long term simulations forecast the optimal date to end the policy. Finally, we show that the proportion of asymptomatic individuals affects the amplitude of the peak of symptomatic infected, suggesting that it is important to test the population.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76257-1</identifier><identifier>PMID: 33173127</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2397 ; 639/705/1046 ; Brazil - epidemiology ; Coronavirus Infections - epidemiology ; Coronaviruses ; COVID-19 ; Epidemic models ; Epidemiology ; Forecasting ; Humanities and Social Sciences ; Humans ; Mathematical models ; Models, Statistical ; multidisciplinary ; Pandemics ; Pandemics - statistics & numerical data ; Pneumonia, Viral - epidemiology ; Science ; Science (multidisciplinary) ; Social distancing ; Time Factors</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.19457, Article 19457</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-814ec095633d4e9d4968ff853ab4ad72b4c3905c33619798f6f30087a3c1bfcd3</citedby><cites>FETCH-LOGICAL-c588t-814ec095633d4e9d4968ff853ab4ad72b4c3905c33619798f6f30087a3c1bfcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655855/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655855/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33173127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastos, Saulo B.</creatorcontrib><creatorcontrib>Cajueiro, Daniel O.</creatorcontrib><title>Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We model and forecast the early evolution of the COVID-19 pandemic in Brazil using Brazilian recent data from February 25, 2020 to March 30, 2020. This early period accounts for unawareness of the epidemiological characteristics of the disease in a new territory, sub-notification of the real numbers of infected people and the timely introduction of social distancing policies to flatten the spread of the disease. We use two variations of the SIR model and we include a parameter that comprises the effects of social distancing measures. Short and long term forecasts show that the social distancing policy imposed by the government is able to flatten the pattern of infection of the COVID-19. However, our results also show that if this policy does not last enough time, it is only able to shift the peak of infection into the future keeping the value of the peak in almost the same value. Furthermore, our long term simulations forecast the optimal date to end the policy. Finally, we show that the proportion of asymptomatic individuals affects the amplitude of the peak of symptomatic infected, suggesting that it is important to test the population.</description><subject>631/114/2397</subject><subject>639/705/1046</subject><subject>Brazil - epidemiology</subject><subject>Coronavirus Infections - epidemiology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Epidemic models</subject><subject>Epidemiology</subject><subject>Forecasting</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>multidisciplinary</subject><subject>Pandemics</subject><subject>Pandemics - statistics & numerical data</subject><subject>Pneumonia, Viral - epidemiology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Social distancing</subject><subject>Time Factors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtPGzEUha0K1ETAH-iiGqkbNgN-PzZIJWoBKYgNrC3HYydGEzvYM5Hor68hlAILvLGv73eOfXUA-IbgCYJEnhaKmJItxLAVHDPRoi9giiFlLSYY7705T8BRKfewLoYVReormBCCBEFYTMHNdepcH-KyMbFrfMrOmjI81cPKNc7k_rFx29SPQ0ixSf75epa2oWuRajZV5NbBNiE259n8Cf0h2PemL-7oZT8Ad79_3c4u2_nNxdXs57y1TMqhlYg6CxXjhHTUqY4qLr2XjJgFNZ3AC2qJgswSwpESSnruCYRSGGLRwtuOHICzne9mXKxdZ10csun1Joe1yY86maDfd2JY6WXaasEZk4xVg-MXg5weRlcGvQ7Fur430aWxaEyZ4pgjjiv64wN6n8Yc63iVEogxwQivFN5RNqdSsvOvn0FQP0Wmd5HpGpl-jkyjKvr-doxXyb-AKkB2QKmtuHT5_9uf2P4FEDagrA</recordid><startdate>20201110</startdate><enddate>20201110</enddate><creator>Bastos, Saulo B.</creator><creator>Cajueiro, Daniel O.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201110</creationdate><title>Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil</title><author>Bastos, Saulo B. ; Cajueiro, Daniel O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-814ec095633d4e9d4968ff853ab4ad72b4c3905c33619798f6f30087a3c1bfcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/2397</topic><topic>639/705/1046</topic><topic>Brazil - epidemiology</topic><topic>Coronavirus Infections - epidemiology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Epidemic models</topic><topic>Epidemiology</topic><topic>Forecasting</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>multidisciplinary</topic><topic>Pandemics</topic><topic>Pandemics - statistics & numerical data</topic><topic>Pneumonia, Viral - epidemiology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Social distancing</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastos, Saulo B.</creatorcontrib><creatorcontrib>Cajueiro, Daniel O.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastos, Saulo B.</au><au>Cajueiro, Daniel O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-10</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>19457</spage><pages>19457-</pages><artnum>19457</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We model and forecast the early evolution of the COVID-19 pandemic in Brazil using Brazilian recent data from February 25, 2020 to March 30, 2020. This early period accounts for unawareness of the epidemiological characteristics of the disease in a new territory, sub-notification of the real numbers of infected people and the timely introduction of social distancing policies to flatten the spread of the disease. We use two variations of the SIR model and we include a parameter that comprises the effects of social distancing measures. Short and long term forecasts show that the social distancing policy imposed by the government is able to flatten the pattern of infection of the COVID-19. However, our results also show that if this policy does not last enough time, it is only able to shift the peak of infection into the future keeping the value of the peak in almost the same value. Furthermore, our long term simulations forecast the optimal date to end the policy. Finally, we show that the proportion of asymptomatic individuals affects the amplitude of the peak of symptomatic infected, suggesting that it is important to test the population.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33173127</pmid><doi>10.1038/s41598-020-76257-1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-11, Vol.10 (1), p.19457, Article 19457 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655855 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/114/2397 639/705/1046 Brazil - epidemiology Coronavirus Infections - epidemiology Coronaviruses COVID-19 Epidemic models Epidemiology Forecasting Humanities and Social Sciences Humans Mathematical models Models, Statistical multidisciplinary Pandemics Pandemics - statistics & numerical data Pneumonia, Viral - epidemiology Science Science (multidisciplinary) Social distancing Time Factors |
title | Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20forecasting%20the%20early%20evolution%20of%20the%20Covid-19%20pandemic%20in%20Brazil&rft.jtitle=Scientific%20reports&rft.au=Bastos,%20Saulo%20B.&rft.date=2020-11-10&rft.volume=10&rft.issue=1&rft.spage=19457&rft.pages=19457-&rft.artnum=19457&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76257-1&rft_dat=%3Cproquest_pubme%3E2459626162%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471557536&rft_id=info:pmid/33173127&rfr_iscdi=true |