Hydrogel Network Dynamics Regulate Vascular Morphogenesis
Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogel...
Gespeichert in:
Veröffentlicht in: | Cell stem cell 2020-11, Vol.27 (5), p.798-812.e6 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 812.e6 |
---|---|
container_issue | 5 |
container_start_page | 798 |
container_title | Cell stem cell |
container_volume | 27 |
creator | Wei, Zhao Schnellmann, Rahel Pruitt, Hawley C. Gerecht, Sharon |
description | Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogels increase the contractility of human endothelial colony-forming cells (hECFCs), promote the clustering of integrin β1, and promote the recruitment of vinculin, leading to the activation of focal adhesion kinase (FAK) and metalloproteinase expression. This leads to the robust assembly of vasculature and the deposition of new basement membrane. We also show that non-dynamic (N) hydrogels do not promote FAK signaling and that stiff D- and N-hydrogels are constrained for vascular morphogenesis. Furthermore, D-hydrogels promote hECFC microvessel formation and angiogenesis in vivo. Our results indicate that cell contractility mediates integrin signaling via inside-out signaling and emphasizes the importance of matrix dynamics in vascular tissue formation, thus informing future studies of vascularization and tissue engineering applications.
[Display omitted]
•Development of dynamic hydrogels to study matrix dynamics role in vascular assembly•Dynamic hydrogels promote cell contractility-mediated integrin clustering•Non-dynamic hydrogels prevent integrin clustering, subsequently inhibiting morphogenesis•Dynamic hydrogels promote the formation of microvessels and angiogenesis in vivo
Engineered viscoelastic hydrogels with dynamic crosslinks permit cell contractility-mediated integrin clustering and FAK activation, independent of hydrogel stiffness, and promote vascular assembly. However, non-dynamic hydrogels prevent cell contractility and integrin clustering, subsequently inhibiting the initiation and progression of vascular morphogenesis. |
doi_str_mv | 10.1016/j.stem.2020.08.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S193459092030401X</els_id><sourcerecordid>2443517643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-eab86de2d7fb4f5f322471650bccd4d778a995ea9376237bdd1048abb6cae2a13</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJaT7aP9BD8TEXO_q0LCiBkG_YtlCSXoUsjTfa2tZG8m7Yf18tm4TmktMMzDPvDA9CXwmuCCb1yaJKEwwVxRRXuKkwFh_QAWmkKJWUci_3ivFSKKz20WFKiwxIguUntM-oYkRSdYDUzcbFMIe--AnTU4h_i4vNaAZvU_Eb5qveTFD8McnmLhY_Qlw-ZHiE5NNn9LEzfYIvz_UI3V9d3p3flLNf17fnZ7PSciGmEkzb1A6ok13LO9ExSrkktcCttY47KRujlACjmKwpk61zBPPGtG1tDVBD2BE63eUuV-0AzsI4RdPrZfSDiRsdjNdvJ6N_0POw1rIWQlKeA46fA2J4XEGa9OCThb43I4RV0pRzJoisOcso3aE2hpQidK9nCNZb53qht8711rnGjc5K89K3_x98XXmRnIHvOwCyprWHqJP1MFpwPoKdtAv-vfx_ZMWU0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443517643</pqid></control><display><type>article</type><title>Hydrogel Network Dynamics Regulate Vascular Morphogenesis</title><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wei, Zhao ; Schnellmann, Rahel ; Pruitt, Hawley C. ; Gerecht, Sharon</creator><creatorcontrib>Wei, Zhao ; Schnellmann, Rahel ; Pruitt, Hawley C. ; Gerecht, Sharon</creatorcontrib><description>Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogels increase the contractility of human endothelial colony-forming cells (hECFCs), promote the clustering of integrin β1, and promote the recruitment of vinculin, leading to the activation of focal adhesion kinase (FAK) and metalloproteinase expression. This leads to the robust assembly of vasculature and the deposition of new basement membrane. We also show that non-dynamic (N) hydrogels do not promote FAK signaling and that stiff D- and N-hydrogels are constrained for vascular morphogenesis. Furthermore, D-hydrogels promote hECFC microvessel formation and angiogenesis in vivo. Our results indicate that cell contractility mediates integrin signaling via inside-out signaling and emphasizes the importance of matrix dynamics in vascular tissue formation, thus informing future studies of vascularization and tissue engineering applications.
[Display omitted]
•Development of dynamic hydrogels to study matrix dynamics role in vascular assembly•Dynamic hydrogels promote cell contractility-mediated integrin clustering•Non-dynamic hydrogels prevent integrin clustering, subsequently inhibiting morphogenesis•Dynamic hydrogels promote the formation of microvessels and angiogenesis in vivo
Engineered viscoelastic hydrogels with dynamic crosslinks permit cell contractility-mediated integrin clustering and FAK activation, independent of hydrogel stiffness, and promote vascular assembly. However, non-dynamic hydrogels prevent cell contractility and integrin clustering, subsequently inhibiting the initiation and progression of vascular morphogenesis.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2020.08.005</identifier><identifier>PMID: 32931729</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>cell contractility ; integrin clustering ; stress-relaxation ; vasculogenesis</subject><ispartof>Cell stem cell, 2020-11, Vol.27 (5), p.798-812.e6</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-eab86de2d7fb4f5f322471650bccd4d778a995ea9376237bdd1048abb6cae2a13</citedby><cites>FETCH-LOGICAL-c455t-eab86de2d7fb4f5f322471650bccd4d778a995ea9376237bdd1048abb6cae2a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S193459092030401X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32931729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Zhao</creatorcontrib><creatorcontrib>Schnellmann, Rahel</creatorcontrib><creatorcontrib>Pruitt, Hawley C.</creatorcontrib><creatorcontrib>Gerecht, Sharon</creatorcontrib><title>Hydrogel Network Dynamics Regulate Vascular Morphogenesis</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogels increase the contractility of human endothelial colony-forming cells (hECFCs), promote the clustering of integrin β1, and promote the recruitment of vinculin, leading to the activation of focal adhesion kinase (FAK) and metalloproteinase expression. This leads to the robust assembly of vasculature and the deposition of new basement membrane. We also show that non-dynamic (N) hydrogels do not promote FAK signaling and that stiff D- and N-hydrogels are constrained for vascular morphogenesis. Furthermore, D-hydrogels promote hECFC microvessel formation and angiogenesis in vivo. Our results indicate that cell contractility mediates integrin signaling via inside-out signaling and emphasizes the importance of matrix dynamics in vascular tissue formation, thus informing future studies of vascularization and tissue engineering applications.
[Display omitted]
•Development of dynamic hydrogels to study matrix dynamics role in vascular assembly•Dynamic hydrogels promote cell contractility-mediated integrin clustering•Non-dynamic hydrogels prevent integrin clustering, subsequently inhibiting morphogenesis•Dynamic hydrogels promote the formation of microvessels and angiogenesis in vivo
Engineered viscoelastic hydrogels with dynamic crosslinks permit cell contractility-mediated integrin clustering and FAK activation, independent of hydrogel stiffness, and promote vascular assembly. However, non-dynamic hydrogels prevent cell contractility and integrin clustering, subsequently inhibiting the initiation and progression of vascular morphogenesis.</description><subject>cell contractility</subject><subject>integrin clustering</subject><subject>stress-relaxation</subject><subject>vasculogenesis</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVJaT7aP9BD8TEXO_q0LCiBkG_YtlCSXoUsjTfa2tZG8m7Yf18tm4TmktMMzDPvDA9CXwmuCCb1yaJKEwwVxRRXuKkwFh_QAWmkKJWUci_3ivFSKKz20WFKiwxIguUntM-oYkRSdYDUzcbFMIe--AnTU4h_i4vNaAZvU_Eb5qveTFD8McnmLhY_Qlw-ZHiE5NNn9LEzfYIvz_UI3V9d3p3flLNf17fnZ7PSciGmEkzb1A6ok13LO9ExSrkktcCttY47KRujlACjmKwpk61zBPPGtG1tDVBD2BE63eUuV-0AzsI4RdPrZfSDiRsdjNdvJ6N_0POw1rIWQlKeA46fA2J4XEGa9OCThb43I4RV0pRzJoisOcso3aE2hpQidK9nCNZb53qht8711rnGjc5K89K3_x98XXmRnIHvOwCyprWHqJP1MFpwPoKdtAv-vfx_ZMWU0g</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Wei, Zhao</creator><creator>Schnellmann, Rahel</creator><creator>Pruitt, Hawley C.</creator><creator>Gerecht, Sharon</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201105</creationdate><title>Hydrogel Network Dynamics Regulate Vascular Morphogenesis</title><author>Wei, Zhao ; Schnellmann, Rahel ; Pruitt, Hawley C. ; Gerecht, Sharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-eab86de2d7fb4f5f322471650bccd4d778a995ea9376237bdd1048abb6cae2a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cell contractility</topic><topic>integrin clustering</topic><topic>stress-relaxation</topic><topic>vasculogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zhao</creatorcontrib><creatorcontrib>Schnellmann, Rahel</creatorcontrib><creatorcontrib>Pruitt, Hawley C.</creatorcontrib><creatorcontrib>Gerecht, Sharon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Zhao</au><au>Schnellmann, Rahel</au><au>Pruitt, Hawley C.</au><au>Gerecht, Sharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogel Network Dynamics Regulate Vascular Morphogenesis</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>27</volume><issue>5</issue><spage>798</spage><epage>812.e6</epage><pages>798-812.e6</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogels increase the contractility of human endothelial colony-forming cells (hECFCs), promote the clustering of integrin β1, and promote the recruitment of vinculin, leading to the activation of focal adhesion kinase (FAK) and metalloproteinase expression. This leads to the robust assembly of vasculature and the deposition of new basement membrane. We also show that non-dynamic (N) hydrogels do not promote FAK signaling and that stiff D- and N-hydrogels are constrained for vascular morphogenesis. Furthermore, D-hydrogels promote hECFC microvessel formation and angiogenesis in vivo. Our results indicate that cell contractility mediates integrin signaling via inside-out signaling and emphasizes the importance of matrix dynamics in vascular tissue formation, thus informing future studies of vascularization and tissue engineering applications.
[Display omitted]
•Development of dynamic hydrogels to study matrix dynamics role in vascular assembly•Dynamic hydrogels promote cell contractility-mediated integrin clustering•Non-dynamic hydrogels prevent integrin clustering, subsequently inhibiting morphogenesis•Dynamic hydrogels promote the formation of microvessels and angiogenesis in vivo
Engineered viscoelastic hydrogels with dynamic crosslinks permit cell contractility-mediated integrin clustering and FAK activation, independent of hydrogel stiffness, and promote vascular assembly. However, non-dynamic hydrogels prevent cell contractility and integrin clustering, subsequently inhibiting the initiation and progression of vascular morphogenesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32931729</pmid><doi>10.1016/j.stem.2020.08.005</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-5909 |
ispartof | Cell stem cell, 2020-11, Vol.27 (5), p.798-812.e6 |
issn | 1934-5909 1875-9777 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655724 |
source | Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | cell contractility integrin clustering stress-relaxation vasculogenesis |
title | Hydrogel Network Dynamics Regulate Vascular Morphogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogel%20Network%20Dynamics%20Regulate%20Vascular%20Morphogenesis&rft.jtitle=Cell%20stem%20cell&rft.au=Wei,%20Zhao&rft.date=2020-11-05&rft.volume=27&rft.issue=5&rft.spage=798&rft.epage=812.e6&rft.pages=798-812.e6&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2020.08.005&rft_dat=%3Cproquest_pubme%3E2443517643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443517643&rft_id=info:pmid/32931729&rft_els_id=S193459092030401X&rfr_iscdi=true |