Hydrogel Network Dynamics Regulate Vascular Morphogenesis

Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stem cell 2020-11, Vol.27 (5), p.798-812.e6
Hauptverfasser: Wei, Zhao, Schnellmann, Rahel, Pruitt, Hawley C., Gerecht, Sharon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 812.e6
container_issue 5
container_start_page 798
container_title Cell stem cell
container_volume 27
creator Wei, Zhao
Schnellmann, Rahel
Pruitt, Hawley C.
Gerecht, Sharon
description Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogels increase the contractility of human endothelial colony-forming cells (hECFCs), promote the clustering of integrin β1, and promote the recruitment of vinculin, leading to the activation of focal adhesion kinase (FAK) and metalloproteinase expression. This leads to the robust assembly of vasculature and the deposition of new basement membrane. We also show that non-dynamic (N) hydrogels do not promote FAK signaling and that stiff D- and N-hydrogels are constrained for vascular morphogenesis. Furthermore, D-hydrogels promote hECFC microvessel formation and angiogenesis in vivo. Our results indicate that cell contractility mediates integrin signaling via inside-out signaling and emphasizes the importance of matrix dynamics in vascular tissue formation, thus informing future studies of vascularization and tissue engineering applications. [Display omitted] •Development of dynamic hydrogels to study matrix dynamics role in vascular assembly•Dynamic hydrogels promote cell contractility-mediated integrin clustering•Non-dynamic hydrogels prevent integrin clustering, subsequently inhibiting morphogenesis•Dynamic hydrogels promote the formation of microvessels and angiogenesis in vivo Engineered viscoelastic hydrogels with dynamic crosslinks permit cell contractility-mediated integrin clustering and FAK activation, independent of hydrogel stiffness, and promote vascular assembly. However, non-dynamic hydrogels prevent cell contractility and integrin clustering, subsequently inhibiting the initiation and progression of vascular morphogenesis.
doi_str_mv 10.1016/j.stem.2020.08.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S193459092030401X</els_id><sourcerecordid>2443517643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-eab86de2d7fb4f5f322471650bccd4d778a995ea9376237bdd1048abb6cae2a13</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJaT7aP9BD8TEXO_q0LCiBkG_YtlCSXoUsjTfa2tZG8m7Yf18tm4TmktMMzDPvDA9CXwmuCCb1yaJKEwwVxRRXuKkwFh_QAWmkKJWUci_3ivFSKKz20WFKiwxIguUntM-oYkRSdYDUzcbFMIe--AnTU4h_i4vNaAZvU_Eb5qveTFD8McnmLhY_Qlw-ZHiE5NNn9LEzfYIvz_UI3V9d3p3flLNf17fnZ7PSciGmEkzb1A6ok13LO9ExSrkktcCttY47KRujlACjmKwpk61zBPPGtG1tDVBD2BE63eUuV-0AzsI4RdPrZfSDiRsdjNdvJ6N_0POw1rIWQlKeA46fA2J4XEGa9OCThb43I4RV0pRzJoisOcso3aE2hpQidK9nCNZb53qht8711rnGjc5K89K3_x98XXmRnIHvOwCyprWHqJP1MFpwPoKdtAv-vfx_ZMWU0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443517643</pqid></control><display><type>article</type><title>Hydrogel Network Dynamics Regulate Vascular Morphogenesis</title><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wei, Zhao ; Schnellmann, Rahel ; Pruitt, Hawley C. ; Gerecht, Sharon</creator><creatorcontrib>Wei, Zhao ; Schnellmann, Rahel ; Pruitt, Hawley C. ; Gerecht, Sharon</creatorcontrib><description>Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogels increase the contractility of human endothelial colony-forming cells (hECFCs), promote the clustering of integrin β1, and promote the recruitment of vinculin, leading to the activation of focal adhesion kinase (FAK) and metalloproteinase expression. This leads to the robust assembly of vasculature and the deposition of new basement membrane. We also show that non-dynamic (N) hydrogels do not promote FAK signaling and that stiff D- and N-hydrogels are constrained for vascular morphogenesis. Furthermore, D-hydrogels promote hECFC microvessel formation and angiogenesis in vivo. Our results indicate that cell contractility mediates integrin signaling via inside-out signaling and emphasizes the importance of matrix dynamics in vascular tissue formation, thus informing future studies of vascularization and tissue engineering applications. [Display omitted] •Development of dynamic hydrogels to study matrix dynamics role in vascular assembly•Dynamic hydrogels promote cell contractility-mediated integrin clustering•Non-dynamic hydrogels prevent integrin clustering, subsequently inhibiting morphogenesis•Dynamic hydrogels promote the formation of microvessels and angiogenesis in vivo Engineered viscoelastic hydrogels with dynamic crosslinks permit cell contractility-mediated integrin clustering and FAK activation, independent of hydrogel stiffness, and promote vascular assembly. However, non-dynamic hydrogels prevent cell contractility and integrin clustering, subsequently inhibiting the initiation and progression of vascular morphogenesis.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2020.08.005</identifier><identifier>PMID: 32931729</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>cell contractility ; integrin clustering ; stress-relaxation ; vasculogenesis</subject><ispartof>Cell stem cell, 2020-11, Vol.27 (5), p.798-812.e6</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-eab86de2d7fb4f5f322471650bccd4d778a995ea9376237bdd1048abb6cae2a13</citedby><cites>FETCH-LOGICAL-c455t-eab86de2d7fb4f5f322471650bccd4d778a995ea9376237bdd1048abb6cae2a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S193459092030401X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32931729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Zhao</creatorcontrib><creatorcontrib>Schnellmann, Rahel</creatorcontrib><creatorcontrib>Pruitt, Hawley C.</creatorcontrib><creatorcontrib>Gerecht, Sharon</creatorcontrib><title>Hydrogel Network Dynamics Regulate Vascular Morphogenesis</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogels increase the contractility of human endothelial colony-forming cells (hECFCs), promote the clustering of integrin β1, and promote the recruitment of vinculin, leading to the activation of focal adhesion kinase (FAK) and metalloproteinase expression. This leads to the robust assembly of vasculature and the deposition of new basement membrane. We also show that non-dynamic (N) hydrogels do not promote FAK signaling and that stiff D- and N-hydrogels are constrained for vascular morphogenesis. Furthermore, D-hydrogels promote hECFC microvessel formation and angiogenesis in vivo. Our results indicate that cell contractility mediates integrin signaling via inside-out signaling and emphasizes the importance of matrix dynamics in vascular tissue formation, thus informing future studies of vascularization and tissue engineering applications. [Display omitted] •Development of dynamic hydrogels to study matrix dynamics role in vascular assembly•Dynamic hydrogels promote cell contractility-mediated integrin clustering•Non-dynamic hydrogels prevent integrin clustering, subsequently inhibiting morphogenesis•Dynamic hydrogels promote the formation of microvessels and angiogenesis in vivo Engineered viscoelastic hydrogels with dynamic crosslinks permit cell contractility-mediated integrin clustering and FAK activation, independent of hydrogel stiffness, and promote vascular assembly. However, non-dynamic hydrogels prevent cell contractility and integrin clustering, subsequently inhibiting the initiation and progression of vascular morphogenesis.</description><subject>cell contractility</subject><subject>integrin clustering</subject><subject>stress-relaxation</subject><subject>vasculogenesis</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVJaT7aP9BD8TEXO_q0LCiBkG_YtlCSXoUsjTfa2tZG8m7Yf18tm4TmktMMzDPvDA9CXwmuCCb1yaJKEwwVxRRXuKkwFh_QAWmkKJWUci_3ivFSKKz20WFKiwxIguUntM-oYkRSdYDUzcbFMIe--AnTU4h_i4vNaAZvU_Eb5qveTFD8McnmLhY_Qlw-ZHiE5NNn9LEzfYIvz_UI3V9d3p3flLNf17fnZ7PSciGmEkzb1A6ok13LO9ExSrkktcCttY47KRujlACjmKwpk61zBPPGtG1tDVBD2BE63eUuV-0AzsI4RdPrZfSDiRsdjNdvJ6N_0POw1rIWQlKeA46fA2J4XEGa9OCThb43I4RV0pRzJoisOcso3aE2hpQidK9nCNZb53qht8711rnGjc5K89K3_x98XXmRnIHvOwCyprWHqJP1MFpwPoKdtAv-vfx_ZMWU0g</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Wei, Zhao</creator><creator>Schnellmann, Rahel</creator><creator>Pruitt, Hawley C.</creator><creator>Gerecht, Sharon</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201105</creationdate><title>Hydrogel Network Dynamics Regulate Vascular Morphogenesis</title><author>Wei, Zhao ; Schnellmann, Rahel ; Pruitt, Hawley C. ; Gerecht, Sharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-eab86de2d7fb4f5f322471650bccd4d778a995ea9376237bdd1048abb6cae2a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cell contractility</topic><topic>integrin clustering</topic><topic>stress-relaxation</topic><topic>vasculogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Zhao</creatorcontrib><creatorcontrib>Schnellmann, Rahel</creatorcontrib><creatorcontrib>Pruitt, Hawley C.</creatorcontrib><creatorcontrib>Gerecht, Sharon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Zhao</au><au>Schnellmann, Rahel</au><au>Pruitt, Hawley C.</au><au>Gerecht, Sharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogel Network Dynamics Regulate Vascular Morphogenesis</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>27</volume><issue>5</issue><spage>798</spage><epage>812.e6</epage><pages>798-812.e6</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Matrix dynamics influence how individual cells develop into complex multicellular tissues. Here, we develop hydrogels with identical polymer components but different crosslinking capacities to enable the investigation of mechanisms underlying vascular morphogenesis. We show that dynamic (D) hydrogels increase the contractility of human endothelial colony-forming cells (hECFCs), promote the clustering of integrin β1, and promote the recruitment of vinculin, leading to the activation of focal adhesion kinase (FAK) and metalloproteinase expression. This leads to the robust assembly of vasculature and the deposition of new basement membrane. We also show that non-dynamic (N) hydrogels do not promote FAK signaling and that stiff D- and N-hydrogels are constrained for vascular morphogenesis. Furthermore, D-hydrogels promote hECFC microvessel formation and angiogenesis in vivo. Our results indicate that cell contractility mediates integrin signaling via inside-out signaling and emphasizes the importance of matrix dynamics in vascular tissue formation, thus informing future studies of vascularization and tissue engineering applications. [Display omitted] •Development of dynamic hydrogels to study matrix dynamics role in vascular assembly•Dynamic hydrogels promote cell contractility-mediated integrin clustering•Non-dynamic hydrogels prevent integrin clustering, subsequently inhibiting morphogenesis•Dynamic hydrogels promote the formation of microvessels and angiogenesis in vivo Engineered viscoelastic hydrogels with dynamic crosslinks permit cell contractility-mediated integrin clustering and FAK activation, independent of hydrogel stiffness, and promote vascular assembly. However, non-dynamic hydrogels prevent cell contractility and integrin clustering, subsequently inhibiting the initiation and progression of vascular morphogenesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32931729</pmid><doi>10.1016/j.stem.2020.08.005</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2020-11, Vol.27 (5), p.798-812.e6
issn 1934-5909
1875-9777
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655724
source Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects cell contractility
integrin clustering
stress-relaxation
vasculogenesis
title Hydrogel Network Dynamics Regulate Vascular Morphogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogel%20Network%20Dynamics%20Regulate%20Vascular%20Morphogenesis&rft.jtitle=Cell%20stem%20cell&rft.au=Wei,%20Zhao&rft.date=2020-11-05&rft.volume=27&rft.issue=5&rft.spage=798&rft.epage=812.e6&rft.pages=798-812.e6&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2020.08.005&rft_dat=%3Cproquest_pubme%3E2443517643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443517643&rft_id=info:pmid/32931729&rft_els_id=S193459092030401X&rfr_iscdi=true