Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche

Bone-marrow endothelial cells in the haematopoietic stem-cell niche form a network of blood vessels that regulates blood-cell traffic as well as the maintenance and function of haematopoietic stem and progenitor cells. Here, we report the design and in vivo performance of systemically injected lipid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biomedical engineering 2020-11, Vol.4 (11), p.1076-1089
Hauptverfasser: Krohn-Grimberghe, Marvin, Mitchell, Michael J., Schloss, Maximilian J., Khan, Omar F., Courties, Gabriel, Guimaraes, Pedro P. G., Rohde, David, Cremer, Sebastian, Kowalski, Piotr S., Sun, Yuan, Tan, Mingchee, Webster, Jamie, Wang, Karin, Iwamoto, Yoshiko, Schmidt, Stephen P., Wojtkiewicz, Gregory R., Nayar, Ribhu, Frodermann, Vanessa, Hulsmans, Maarten, Chung, Amanda, Hoyer, Friedrich Felix, Swirski, Filip K., Langer, Robert, Anderson, Daniel G., Nahrendorf, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1089
container_issue 11
container_start_page 1076
container_title Nature biomedical engineering
container_volume 4
creator Krohn-Grimberghe, Marvin
Mitchell, Michael J.
Schloss, Maximilian J.
Khan, Omar F.
Courties, Gabriel
Guimaraes, Pedro P. G.
Rohde, David
Cremer, Sebastian
Kowalski, Piotr S.
Sun, Yuan
Tan, Mingchee
Webster, Jamie
Wang, Karin
Iwamoto, Yoshiko
Schmidt, Stephen P.
Wojtkiewicz, Gregory R.
Nayar, Ribhu
Frodermann, Vanessa
Hulsmans, Maarten
Chung, Amanda
Hoyer, Friedrich Felix
Swirski, Filip K.
Langer, Robert
Anderson, Daniel G.
Nahrendorf, Matthias
description Bone-marrow endothelial cells in the haematopoietic stem-cell niche form a network of blood vessels that regulates blood-cell traffic as well as the maintenance and function of haematopoietic stem and progenitor cells. Here, we report the design and in vivo performance of systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA (siRNA), for the silencing of genes in bone-marrow endothelial cells. In mice, nanoparticles encapsulating siRNA sequences targeting the proteins stromal-derived factor 1 (Sdf1) or monocyte chemotactic protein 1 (Mcp1) enhanced (when silencing Sdf1 ) or inhibited (when silencing Mcp1 ) the release of stem and progenitor cells and of leukocytes from the bone marrow. In a mouse model of myocardial infarction, nanoparticle-mediated inhibition of cell release from the haematopoietic niche via Mcp 1 silencing reduced leukocytes in the diseased heart, improved healing after infarction and attenuated heart failure. Nanoparticle-mediated RNA interference in the haematopoietic niche could be used to investigate haematopoietic processes for therapeutic applications in cancer, infection and cardiovascular disease. Systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA for silencing genes in bone-marrow endothelial cells of mice improved the healing of the mice after myocardial infarction.
doi_str_mv 10.1038/s41551-020-00623-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471540910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2c838e068b1c770deee7857c844b7b2a848337946027b0b6e48a7017171674ed3</originalsourceid><addsrcrecordid>eNp9UV1LHDEUDUWpsvoH-lAG-pz2ZpLJzb4URNQKYqG0oE8hk727G5lNxmRW8N83da3Vl5KHJJyPezmHsQ8CPguQ5ktRousEhxY4gG4lx3fssBUdcqP0zd6r9wE7LuUOAMRcqjl279mBlFWnAQ7Z7bWLaXR5Cn4gTtG7sWwHN9GiKeHH9Ulplik3K4pU_0PFQ1w1ITbTmpq1o42b0pgCVXlTJtpwT8PQxODXdMT2l24odPx8z9iv87Ofp9_41feLy9OTK-4Vqom33khDoE0vPCIsiAhNh94o1WPfOqOMlDhXGlrsodekjEMQWI9GRQs5Y193vuO239DCU5yyG-yYw8blR5tcsG-RGNZ2lR4s6q7TRlSDT88GOd1vqUz2Lm1zrDvbVqHoFMxr4jPW7lg-p1IyLV8mCLB_GrG7RmxN1j41YrGKPr7e7UXyN_9KkDtCqVBcUf43-z-2vwGYg5bs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471540910</pqid></control><display><type>article</type><title>Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche</title><source>MEDLINE</source><source>Springer Online Journals</source><creator>Krohn-Grimberghe, Marvin ; Mitchell, Michael J. ; Schloss, Maximilian J. ; Khan, Omar F. ; Courties, Gabriel ; Guimaraes, Pedro P. G. ; Rohde, David ; Cremer, Sebastian ; Kowalski, Piotr S. ; Sun, Yuan ; Tan, Mingchee ; Webster, Jamie ; Wang, Karin ; Iwamoto, Yoshiko ; Schmidt, Stephen P. ; Wojtkiewicz, Gregory R. ; Nayar, Ribhu ; Frodermann, Vanessa ; Hulsmans, Maarten ; Chung, Amanda ; Hoyer, Friedrich Felix ; Swirski, Filip K. ; Langer, Robert ; Anderson, Daniel G. ; Nahrendorf, Matthias</creator><creatorcontrib>Krohn-Grimberghe, Marvin ; Mitchell, Michael J. ; Schloss, Maximilian J. ; Khan, Omar F. ; Courties, Gabriel ; Guimaraes, Pedro P. G. ; Rohde, David ; Cremer, Sebastian ; Kowalski, Piotr S. ; Sun, Yuan ; Tan, Mingchee ; Webster, Jamie ; Wang, Karin ; Iwamoto, Yoshiko ; Schmidt, Stephen P. ; Wojtkiewicz, Gregory R. ; Nayar, Ribhu ; Frodermann, Vanessa ; Hulsmans, Maarten ; Chung, Amanda ; Hoyer, Friedrich Felix ; Swirski, Filip K. ; Langer, Robert ; Anderson, Daniel G. ; Nahrendorf, Matthias</creatorcontrib><description>Bone-marrow endothelial cells in the haematopoietic stem-cell niche form a network of blood vessels that regulates blood-cell traffic as well as the maintenance and function of haematopoietic stem and progenitor cells. Here, we report the design and in vivo performance of systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA (siRNA), for the silencing of genes in bone-marrow endothelial cells. In mice, nanoparticles encapsulating siRNA sequences targeting the proteins stromal-derived factor 1 (Sdf1) or monocyte chemotactic protein 1 (Mcp1) enhanced (when silencing Sdf1 ) or inhibited (when silencing Mcp1 ) the release of stem and progenitor cells and of leukocytes from the bone marrow. In a mouse model of myocardial infarction, nanoparticle-mediated inhibition of cell release from the haematopoietic niche via Mcp 1 silencing reduced leukocytes in the diseased heart, improved healing after infarction and attenuated heart failure. Nanoparticle-mediated RNA interference in the haematopoietic niche could be used to investigate haematopoietic processes for therapeutic applications in cancer, infection and cardiovascular disease. Systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA for silencing genes in bone-marrow endothelial cells of mice improved the healing of the mice after myocardial infarction.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-020-00623-7</identifier><identifier>PMID: 33020600</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/63 ; 639/925/350 ; 692/4019 ; 692/699/1541 ; 692/699/249 ; Animals ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Blood vessels ; Bone healing ; Bone marrow ; Bone Marrow Cells - drug effects ; Bone Marrow Cells - metabolism ; Cardiovascular diseases ; Cells, Cultured ; Congestive heart failure ; Coronary artery disease ; Disease Models, Animal ; Drug Delivery Systems - methods ; Encapsulation ; Endothelial cells ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Gene silencing ; Gene Silencing - drug effects ; Genes ; Healing ; Heart attacks ; Hematopoietic stem cells ; Hematopoietic Stem Cells - drug effects ; Hematopoietic Stem Cells - metabolism ; Leukocytes ; Lipids ; Mice, Inbred C57BL ; Monocyte chemoattractant protein 1 ; Monocytes ; Myocardial infarction ; Myocardial Infarction - prevention &amp; control ; Nanoparticles ; Nanoparticles - administration &amp; dosage ; Nanoparticles - chemistry ; Polymers ; Progenitor cells ; Proteins ; Ribonucleic acid ; RNA ; RNA, Small Interfering - administration &amp; dosage ; RNA, Small Interfering - chemistry ; RNA-mediated interference ; SDF-1 protein ; siRNA ; Stem Cell Niche - genetics ; Stem cells ; Therapeutic applications</subject><ispartof>Nature biomedical engineering, 2020-11, Vol.4 (11), p.1076-1089</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2c838e068b1c770deee7857c844b7b2a848337946027b0b6e48a7017171674ed3</citedby><cites>FETCH-LOGICAL-c474t-2c838e068b1c770deee7857c844b7b2a848337946027b0b6e48a7017171674ed3</cites><orcidid>0000-0003-3811-2369 ; 0000-0002-3148-8411 ; 0000-0003-1009-658X ; 0000-0003-4255-0492 ; 0000-0002-3628-2244 ; 0000-0001-5629-4798 ; 0000-0001-8607-0189 ; 0000-0001-5566-6692 ; 0000-0002-3163-9152 ; 0000-0001-7812-2583 ; 0000-0002-4021-1887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-020-00623-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-020-00623-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33020600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krohn-Grimberghe, Marvin</creatorcontrib><creatorcontrib>Mitchell, Michael J.</creatorcontrib><creatorcontrib>Schloss, Maximilian J.</creatorcontrib><creatorcontrib>Khan, Omar F.</creatorcontrib><creatorcontrib>Courties, Gabriel</creatorcontrib><creatorcontrib>Guimaraes, Pedro P. G.</creatorcontrib><creatorcontrib>Rohde, David</creatorcontrib><creatorcontrib>Cremer, Sebastian</creatorcontrib><creatorcontrib>Kowalski, Piotr S.</creatorcontrib><creatorcontrib>Sun, Yuan</creatorcontrib><creatorcontrib>Tan, Mingchee</creatorcontrib><creatorcontrib>Webster, Jamie</creatorcontrib><creatorcontrib>Wang, Karin</creatorcontrib><creatorcontrib>Iwamoto, Yoshiko</creatorcontrib><creatorcontrib>Schmidt, Stephen P.</creatorcontrib><creatorcontrib>Wojtkiewicz, Gregory R.</creatorcontrib><creatorcontrib>Nayar, Ribhu</creatorcontrib><creatorcontrib>Frodermann, Vanessa</creatorcontrib><creatorcontrib>Hulsmans, Maarten</creatorcontrib><creatorcontrib>Chung, Amanda</creatorcontrib><creatorcontrib>Hoyer, Friedrich Felix</creatorcontrib><creatorcontrib>Swirski, Filip K.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Anderson, Daniel G.</creatorcontrib><creatorcontrib>Nahrendorf, Matthias</creatorcontrib><title>Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>Bone-marrow endothelial cells in the haematopoietic stem-cell niche form a network of blood vessels that regulates blood-cell traffic as well as the maintenance and function of haematopoietic stem and progenitor cells. Here, we report the design and in vivo performance of systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA (siRNA), for the silencing of genes in bone-marrow endothelial cells. In mice, nanoparticles encapsulating siRNA sequences targeting the proteins stromal-derived factor 1 (Sdf1) or monocyte chemotactic protein 1 (Mcp1) enhanced (when silencing Sdf1 ) or inhibited (when silencing Mcp1 ) the release of stem and progenitor cells and of leukocytes from the bone marrow. In a mouse model of myocardial infarction, nanoparticle-mediated inhibition of cell release from the haematopoietic niche via Mcp 1 silencing reduced leukocytes in the diseased heart, improved healing after infarction and attenuated heart failure. Nanoparticle-mediated RNA interference in the haematopoietic niche could be used to investigate haematopoietic processes for therapeutic applications in cancer, infection and cardiovascular disease. Systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA for silencing genes in bone-marrow endothelial cells of mice improved the healing of the mice after myocardial infarction.</description><subject>14</subject><subject>14/63</subject><subject>639/925/350</subject><subject>692/4019</subject><subject>692/699/1541</subject><subject>692/699/249</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Blood vessels</subject><subject>Bone healing</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - drug effects</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cardiovascular diseases</subject><subject>Cells, Cultured</subject><subject>Congestive heart failure</subject><subject>Coronary artery disease</subject><subject>Disease Models, Animal</subject><subject>Drug Delivery Systems - methods</subject><subject>Encapsulation</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Gene silencing</subject><subject>Gene Silencing - drug effects</subject><subject>Genes</subject><subject>Healing</subject><subject>Heart attacks</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Leukocytes</subject><subject>Lipids</subject><subject>Mice, Inbred C57BL</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Monocytes</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - prevention &amp; control</subject><subject>Nanoparticles</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Polymers</subject><subject>Progenitor cells</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering - administration &amp; dosage</subject><subject>RNA, Small Interfering - chemistry</subject><subject>RNA-mediated interference</subject><subject>SDF-1 protein</subject><subject>siRNA</subject><subject>Stem Cell Niche - genetics</subject><subject>Stem cells</subject><subject>Therapeutic applications</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UV1LHDEUDUWpsvoH-lAG-pz2ZpLJzb4URNQKYqG0oE8hk727G5lNxmRW8N83da3Vl5KHJJyPezmHsQ8CPguQ5ktRousEhxY4gG4lx3fssBUdcqP0zd6r9wE7LuUOAMRcqjl279mBlFWnAQ7Z7bWLaXR5Cn4gTtG7sWwHN9GiKeHH9Ulplik3K4pU_0PFQ1w1ITbTmpq1o42b0pgCVXlTJtpwT8PQxODXdMT2l24odPx8z9iv87Ofp9_41feLy9OTK-4Vqom33khDoE0vPCIsiAhNh94o1WPfOqOMlDhXGlrsodekjEMQWI9GRQs5Y193vuO239DCU5yyG-yYw8blR5tcsG-RGNZ2lR4s6q7TRlSDT88GOd1vqUz2Lm1zrDvbVqHoFMxr4jPW7lg-p1IyLV8mCLB_GrG7RmxN1j41YrGKPr7e7UXyN_9KkDtCqVBcUf43-z-2vwGYg5bs</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Krohn-Grimberghe, Marvin</creator><creator>Mitchell, Michael J.</creator><creator>Schloss, Maximilian J.</creator><creator>Khan, Omar F.</creator><creator>Courties, Gabriel</creator><creator>Guimaraes, Pedro P. G.</creator><creator>Rohde, David</creator><creator>Cremer, Sebastian</creator><creator>Kowalski, Piotr S.</creator><creator>Sun, Yuan</creator><creator>Tan, Mingchee</creator><creator>Webster, Jamie</creator><creator>Wang, Karin</creator><creator>Iwamoto, Yoshiko</creator><creator>Schmidt, Stephen P.</creator><creator>Wojtkiewicz, Gregory R.</creator><creator>Nayar, Ribhu</creator><creator>Frodermann, Vanessa</creator><creator>Hulsmans, Maarten</creator><creator>Chung, Amanda</creator><creator>Hoyer, Friedrich Felix</creator><creator>Swirski, Filip K.</creator><creator>Langer, Robert</creator><creator>Anderson, Daniel G.</creator><creator>Nahrendorf, Matthias</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3811-2369</orcidid><orcidid>https://orcid.org/0000-0002-3148-8411</orcidid><orcidid>https://orcid.org/0000-0003-1009-658X</orcidid><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0002-3628-2244</orcidid><orcidid>https://orcid.org/0000-0001-5629-4798</orcidid><orcidid>https://orcid.org/0000-0001-8607-0189</orcidid><orcidid>https://orcid.org/0000-0001-5566-6692</orcidid><orcidid>https://orcid.org/0000-0002-3163-9152</orcidid><orcidid>https://orcid.org/0000-0001-7812-2583</orcidid><orcidid>https://orcid.org/0000-0002-4021-1887</orcidid></search><sort><creationdate>20201101</creationdate><title>Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche</title><author>Krohn-Grimberghe, Marvin ; Mitchell, Michael J. ; Schloss, Maximilian J. ; Khan, Omar F. ; Courties, Gabriel ; Guimaraes, Pedro P. G. ; Rohde, David ; Cremer, Sebastian ; Kowalski, Piotr S. ; Sun, Yuan ; Tan, Mingchee ; Webster, Jamie ; Wang, Karin ; Iwamoto, Yoshiko ; Schmidt, Stephen P. ; Wojtkiewicz, Gregory R. ; Nayar, Ribhu ; Frodermann, Vanessa ; Hulsmans, Maarten ; Chung, Amanda ; Hoyer, Friedrich Felix ; Swirski, Filip K. ; Langer, Robert ; Anderson, Daniel G. ; Nahrendorf, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2c838e068b1c770deee7857c844b7b2a848337946027b0b6e48a7017171674ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14</topic><topic>14/63</topic><topic>639/925/350</topic><topic>692/4019</topic><topic>692/699/1541</topic><topic>692/699/249</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Blood vessels</topic><topic>Bone healing</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - drug effects</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cardiovascular diseases</topic><topic>Cells, Cultured</topic><topic>Congestive heart failure</topic><topic>Coronary artery disease</topic><topic>Disease Models, Animal</topic><topic>Drug Delivery Systems - methods</topic><topic>Encapsulation</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Gene silencing</topic><topic>Gene Silencing - drug effects</topic><topic>Genes</topic><topic>Healing</topic><topic>Heart attacks</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Leukocytes</topic><topic>Lipids</topic><topic>Mice, Inbred C57BL</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Monocytes</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - prevention &amp; control</topic><topic>Nanoparticles</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Polymers</topic><topic>Progenitor cells</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering - administration &amp; dosage</topic><topic>RNA, Small Interfering - chemistry</topic><topic>RNA-mediated interference</topic><topic>SDF-1 protein</topic><topic>siRNA</topic><topic>Stem Cell Niche - genetics</topic><topic>Stem cells</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krohn-Grimberghe, Marvin</creatorcontrib><creatorcontrib>Mitchell, Michael J.</creatorcontrib><creatorcontrib>Schloss, Maximilian J.</creatorcontrib><creatorcontrib>Khan, Omar F.</creatorcontrib><creatorcontrib>Courties, Gabriel</creatorcontrib><creatorcontrib>Guimaraes, Pedro P. G.</creatorcontrib><creatorcontrib>Rohde, David</creatorcontrib><creatorcontrib>Cremer, Sebastian</creatorcontrib><creatorcontrib>Kowalski, Piotr S.</creatorcontrib><creatorcontrib>Sun, Yuan</creatorcontrib><creatorcontrib>Tan, Mingchee</creatorcontrib><creatorcontrib>Webster, Jamie</creatorcontrib><creatorcontrib>Wang, Karin</creatorcontrib><creatorcontrib>Iwamoto, Yoshiko</creatorcontrib><creatorcontrib>Schmidt, Stephen P.</creatorcontrib><creatorcontrib>Wojtkiewicz, Gregory R.</creatorcontrib><creatorcontrib>Nayar, Ribhu</creatorcontrib><creatorcontrib>Frodermann, Vanessa</creatorcontrib><creatorcontrib>Hulsmans, Maarten</creatorcontrib><creatorcontrib>Chung, Amanda</creatorcontrib><creatorcontrib>Hoyer, Friedrich Felix</creatorcontrib><creatorcontrib>Swirski, Filip K.</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Anderson, Daniel G.</creatorcontrib><creatorcontrib>Nahrendorf, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krohn-Grimberghe, Marvin</au><au>Mitchell, Michael J.</au><au>Schloss, Maximilian J.</au><au>Khan, Omar F.</au><au>Courties, Gabriel</au><au>Guimaraes, Pedro P. G.</au><au>Rohde, David</au><au>Cremer, Sebastian</au><au>Kowalski, Piotr S.</au><au>Sun, Yuan</au><au>Tan, Mingchee</au><au>Webster, Jamie</au><au>Wang, Karin</au><au>Iwamoto, Yoshiko</au><au>Schmidt, Stephen P.</au><au>Wojtkiewicz, Gregory R.</au><au>Nayar, Ribhu</au><au>Frodermann, Vanessa</au><au>Hulsmans, Maarten</au><au>Chung, Amanda</au><au>Hoyer, Friedrich Felix</au><au>Swirski, Filip K.</au><au>Langer, Robert</au><au>Anderson, Daniel G.</au><au>Nahrendorf, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>4</volume><issue>11</issue><spage>1076</spage><epage>1089</epage><pages>1076-1089</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>Bone-marrow endothelial cells in the haematopoietic stem-cell niche form a network of blood vessels that regulates blood-cell traffic as well as the maintenance and function of haematopoietic stem and progenitor cells. Here, we report the design and in vivo performance of systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA (siRNA), for the silencing of genes in bone-marrow endothelial cells. In mice, nanoparticles encapsulating siRNA sequences targeting the proteins stromal-derived factor 1 (Sdf1) or monocyte chemotactic protein 1 (Mcp1) enhanced (when silencing Sdf1 ) or inhibited (when silencing Mcp1 ) the release of stem and progenitor cells and of leukocytes from the bone marrow. In a mouse model of myocardial infarction, nanoparticle-mediated inhibition of cell release from the haematopoietic niche via Mcp 1 silencing reduced leukocytes in the diseased heart, improved healing after infarction and attenuated heart failure. Nanoparticle-mediated RNA interference in the haematopoietic niche could be used to investigate haematopoietic processes for therapeutic applications in cancer, infection and cardiovascular disease. Systemically injected lipid–polymer nanoparticles encapsulating small interfering RNA for silencing genes in bone-marrow endothelial cells of mice improved the healing of the mice after myocardial infarction.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33020600</pmid><doi>10.1038/s41551-020-00623-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3811-2369</orcidid><orcidid>https://orcid.org/0000-0002-3148-8411</orcidid><orcidid>https://orcid.org/0000-0003-1009-658X</orcidid><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0002-3628-2244</orcidid><orcidid>https://orcid.org/0000-0001-5629-4798</orcidid><orcidid>https://orcid.org/0000-0001-8607-0189</orcidid><orcidid>https://orcid.org/0000-0001-5566-6692</orcidid><orcidid>https://orcid.org/0000-0002-3163-9152</orcidid><orcidid>https://orcid.org/0000-0001-7812-2583</orcidid><orcidid>https://orcid.org/0000-0002-4021-1887</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2157-846X
ispartof Nature biomedical engineering, 2020-11, Vol.4 (11), p.1076-1089
issn 2157-846X
2157-846X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655681
source MEDLINE; Springer Online Journals
subjects 14
14/63
639/925/350
692/4019
692/699/1541
692/699/249
Animals
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Blood vessels
Bone healing
Bone marrow
Bone Marrow Cells - drug effects
Bone Marrow Cells - metabolism
Cardiovascular diseases
Cells, Cultured
Congestive heart failure
Coronary artery disease
Disease Models, Animal
Drug Delivery Systems - methods
Encapsulation
Endothelial cells
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Gene silencing
Gene Silencing - drug effects
Genes
Healing
Heart attacks
Hematopoietic stem cells
Hematopoietic Stem Cells - drug effects
Hematopoietic Stem Cells - metabolism
Leukocytes
Lipids
Mice, Inbred C57BL
Monocyte chemoattractant protein 1
Monocytes
Myocardial infarction
Myocardial Infarction - prevention & control
Nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Polymers
Progenitor cells
Proteins
Ribonucleic acid
RNA
RNA, Small Interfering - administration & dosage
RNA, Small Interfering - chemistry
RNA-mediated interference
SDF-1 protein
siRNA
Stem Cell Niche - genetics
Stem cells
Therapeutic applications
title Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle-encapsulated%20siRNAs%20for%20gene%20silencing%20in%20the%20haematopoietic%20stem-cell%20niche&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Krohn-Grimberghe,%20Marvin&rft.date=2020-11-01&rft.volume=4&rft.issue=11&rft.spage=1076&rft.epage=1089&rft.pages=1076-1089&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-020-00623-7&rft_dat=%3Cproquest_pubme%3E2471540910%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471540910&rft_id=info:pmid/33020600&rfr_iscdi=true