Novel Model to Predict HCC Recurrence after Liver Transplantation Obtained Using Deep Learning: A Multicenter Study

Several models have been developed using conventional regression approaches to extend the criteria for liver transplantation (LT) in hepatocellular carcinoma (HCC) beyond the Milan criteria. We aimed to develop a novel model to predict tumor recurrence after LT by adopting artificial intelligence (M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2020-09, Vol.12 (10), p.2791
Hauptverfasser: Nam, Joon Yeul, Lee, Jeong-Hoon, Bae, Junho, Chang, Young, Cho, Yuri, Sinn, Dong Hyun, Kim, Bo Hyun, Kim, Seoung Hoon, Yi, Nam-Joon, Lee, Kwang-Woong, Kim, Jong Man, Park, Joong-Won, Kim, Yoon Jun, Yoon, Jung-Hwan, Joh, Jae-Won, Suh, Kyung-Suk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 2791
container_title Cancers
container_volume 12
creator Nam, Joon Yeul
Lee, Jeong-Hoon
Bae, Junho
Chang, Young
Cho, Yuri
Sinn, Dong Hyun
Kim, Bo Hyun
Kim, Seoung Hoon
Yi, Nam-Joon
Lee, Kwang-Woong
Kim, Jong Man
Park, Joong-Won
Kim, Yoon Jun
Yoon, Jung-Hwan
Joh, Jae-Won
Suh, Kyung-Suk
description Several models have been developed using conventional regression approaches to extend the criteria for liver transplantation (LT) in hepatocellular carcinoma (HCC) beyond the Milan criteria. We aimed to develop a novel model to predict tumor recurrence after LT by adopting artificial intelligence (MoRAL-AI). This study included 563 patients who underwent LT for HCC at three large LT centers in Korea. Derivation (n = 349) and validation (n = 214) cohorts were independently established. The primary outcome was time-to-recurrence after LT. A MoRAL-AI was derived from the derivation cohort with a residual block-based deep neural network. The median follow-up duration was 74.7 months (interquartile-range, 18.5–107.4); 204 patients (36.2%) had HCC beyond the Milan criteria. The optimal model consisted of seven layers including two residual blocks. In the validation cohort, the MoRAL-AI showed significantly better discrimination function (c-index = 0.75) than the Milan (c-index = 0.64), MoRAL (c-index = 0.69), University of California San Francisco (c-index = 0.62), up-to-seven (c-index = 0.50), and Kyoto (c-index = 0.50) criteria (all p < 0.001). The largest weighted parameter in the MoRAL-AI was tumor diameter, followed by alpha-fetoprotein, age, and protein induced by vitamin K absence-II. The MoRAL-AI had better predictability of tumor recurrence after LT than conventional models. The MoRAL-AI can also evolve with further data.
doi_str_mv 10.3390/cancers12102791
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7650768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642768657</galeid><sourcerecordid>A642768657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-250ec8d3d7a30995457514ca5011404224affba88aebce337e44dce69e58d5943</originalsourceid><addsrcrecordid>eNpdkc1rVDEUxYMottSu3QbcuBmb77y4EIaptsLUirbrkMm7b0x5k4xJ3kD_e_NoqdosTnLJ4Xfu5SL0lpIPnBty5l30kAtllDBt6At0zIhmC6WMePnP-widlnJH2uGcaqVfoyPO54KoY1S-pQOM-Cr1TWvC3zP0wVd8uVrhH-CnnKGFYDdUyHgdDk1vsotlP7pYXQ0p4utNdSFCj29LiFt8DrDHa3A5tuojXuKraazBQ5wJP-vU379BrwY3Fjh9vE_Q7ZfPN6vLxfr64utquV54YVhdMEnAdz3vtePEGCmkllR4JwmlggjGhBuGjes6BxsPnGsQovegDMiul0bwE_TpgbufNjvo5xayG-0-h53L9za5YP__ieGX3aaD1UoSrboGeP8IyOn3BKXaXSgexjY7pKlYJkQnKDFcN-u7Z9a7NOXYxrNMCq2aCPrXtXUj2BCH1HL9DLVLJVjLVHJmnT24fE6lZBieWqbEzpu3zzbP_wCpcaBO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547625441</pqid></control><display><type>article</type><title>Novel Model to Predict HCC Recurrence after Liver Transplantation Obtained Using Deep Learning: A Multicenter Study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Nam, Joon Yeul ; Lee, Jeong-Hoon ; Bae, Junho ; Chang, Young ; Cho, Yuri ; Sinn, Dong Hyun ; Kim, Bo Hyun ; Kim, Seoung Hoon ; Yi, Nam-Joon ; Lee, Kwang-Woong ; Kim, Jong Man ; Park, Joong-Won ; Kim, Yoon Jun ; Yoon, Jung-Hwan ; Joh, Jae-Won ; Suh, Kyung-Suk</creator><creatorcontrib>Nam, Joon Yeul ; Lee, Jeong-Hoon ; Bae, Junho ; Chang, Young ; Cho, Yuri ; Sinn, Dong Hyun ; Kim, Bo Hyun ; Kim, Seoung Hoon ; Yi, Nam-Joon ; Lee, Kwang-Woong ; Kim, Jong Man ; Park, Joong-Won ; Kim, Yoon Jun ; Yoon, Jung-Hwan ; Joh, Jae-Won ; Suh, Kyung-Suk</creatorcontrib><description>Several models have been developed using conventional regression approaches to extend the criteria for liver transplantation (LT) in hepatocellular carcinoma (HCC) beyond the Milan criteria. We aimed to develop a novel model to predict tumor recurrence after LT by adopting artificial intelligence (MoRAL-AI). This study included 563 patients who underwent LT for HCC at three large LT centers in Korea. Derivation (n = 349) and validation (n = 214) cohorts were independently established. The primary outcome was time-to-recurrence after LT. A MoRAL-AI was derived from the derivation cohort with a residual block-based deep neural network. The median follow-up duration was 74.7 months (interquartile-range, 18.5–107.4); 204 patients (36.2%) had HCC beyond the Milan criteria. The optimal model consisted of seven layers including two residual blocks. In the validation cohort, the MoRAL-AI showed significantly better discrimination function (c-index = 0.75) than the Milan (c-index = 0.64), MoRAL (c-index = 0.69), University of California San Francisco (c-index = 0.62), up-to-seven (c-index = 0.50), and Kyoto (c-index = 0.50) criteria (all p &lt; 0.001). The largest weighted parameter in the MoRAL-AI was tumor diameter, followed by alpha-fetoprotein, age, and protein induced by vitamin K absence-II. The MoRAL-AI had better predictability of tumor recurrence after LT than conventional models. The MoRAL-AI can also evolve with further data.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers12102791</identifier><identifier>PMID: 33003306</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Data integrity ; Deep learning ; Hepatitis B ; Hepatocellular carcinoma ; Hepatoma ; Laboratories ; Liver ; Liver transplantation ; Medical prognosis ; Neural networks ; Regression analysis ; Risk factors ; Survival analysis ; Transplantation ; Variables ; Vitamin K ; α-Fetoprotein</subject><ispartof>Cancers, 2020-09, Vol.12 (10), p.2791</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-250ec8d3d7a30995457514ca5011404224affba88aebce337e44dce69e58d5943</citedby><cites>FETCH-LOGICAL-c492t-250ec8d3d7a30995457514ca5011404224affba88aebce337e44dce69e58d5943</cites><orcidid>0000-0002-5371-8177 ; 0000-0002-4488-5352 ; 0000-0001-9141-7773 ; 0000-0002-0315-2080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650768/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650768/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids></links><search><creatorcontrib>Nam, Joon Yeul</creatorcontrib><creatorcontrib>Lee, Jeong-Hoon</creatorcontrib><creatorcontrib>Bae, Junho</creatorcontrib><creatorcontrib>Chang, Young</creatorcontrib><creatorcontrib>Cho, Yuri</creatorcontrib><creatorcontrib>Sinn, Dong Hyun</creatorcontrib><creatorcontrib>Kim, Bo Hyun</creatorcontrib><creatorcontrib>Kim, Seoung Hoon</creatorcontrib><creatorcontrib>Yi, Nam-Joon</creatorcontrib><creatorcontrib>Lee, Kwang-Woong</creatorcontrib><creatorcontrib>Kim, Jong Man</creatorcontrib><creatorcontrib>Park, Joong-Won</creatorcontrib><creatorcontrib>Kim, Yoon Jun</creatorcontrib><creatorcontrib>Yoon, Jung-Hwan</creatorcontrib><creatorcontrib>Joh, Jae-Won</creatorcontrib><creatorcontrib>Suh, Kyung-Suk</creatorcontrib><title>Novel Model to Predict HCC Recurrence after Liver Transplantation Obtained Using Deep Learning: A Multicenter Study</title><title>Cancers</title><description>Several models have been developed using conventional regression approaches to extend the criteria for liver transplantation (LT) in hepatocellular carcinoma (HCC) beyond the Milan criteria. We aimed to develop a novel model to predict tumor recurrence after LT by adopting artificial intelligence (MoRAL-AI). This study included 563 patients who underwent LT for HCC at three large LT centers in Korea. Derivation (n = 349) and validation (n = 214) cohorts were independently established. The primary outcome was time-to-recurrence after LT. A MoRAL-AI was derived from the derivation cohort with a residual block-based deep neural network. The median follow-up duration was 74.7 months (interquartile-range, 18.5–107.4); 204 patients (36.2%) had HCC beyond the Milan criteria. The optimal model consisted of seven layers including two residual blocks. In the validation cohort, the MoRAL-AI showed significantly better discrimination function (c-index = 0.75) than the Milan (c-index = 0.64), MoRAL (c-index = 0.69), University of California San Francisco (c-index = 0.62), up-to-seven (c-index = 0.50), and Kyoto (c-index = 0.50) criteria (all p &lt; 0.001). The largest weighted parameter in the MoRAL-AI was tumor diameter, followed by alpha-fetoprotein, age, and protein induced by vitamin K absence-II. The MoRAL-AI had better predictability of tumor recurrence after LT than conventional models. The MoRAL-AI can also evolve with further data.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Data integrity</subject><subject>Deep learning</subject><subject>Hepatitis B</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatoma</subject><subject>Laboratories</subject><subject>Liver</subject><subject>Liver transplantation</subject><subject>Medical prognosis</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Risk factors</subject><subject>Survival analysis</subject><subject>Transplantation</subject><subject>Variables</subject><subject>Vitamin K</subject><subject>α-Fetoprotein</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1rVDEUxYMottSu3QbcuBmb77y4EIaptsLUirbrkMm7b0x5k4xJ3kD_e_NoqdosTnLJ4Xfu5SL0lpIPnBty5l30kAtllDBt6At0zIhmC6WMePnP-widlnJH2uGcaqVfoyPO54KoY1S-pQOM-Cr1TWvC3zP0wVd8uVrhH-CnnKGFYDdUyHgdDk1vsotlP7pYXQ0p4utNdSFCj29LiFt8DrDHa3A5tuojXuKraazBQ5wJP-vU379BrwY3Fjh9vE_Q7ZfPN6vLxfr64utquV54YVhdMEnAdz3vtePEGCmkllR4JwmlggjGhBuGjes6BxsPnGsQovegDMiul0bwE_TpgbufNjvo5xayG-0-h53L9za5YP__ieGX3aaD1UoSrboGeP8IyOn3BKXaXSgexjY7pKlYJkQnKDFcN-u7Z9a7NOXYxrNMCq2aCPrXtXUj2BCH1HL9DLVLJVjLVHJmnT24fE6lZBieWqbEzpu3zzbP_wCpcaBO</recordid><startdate>20200929</startdate><enddate>20200929</enddate><creator>Nam, Joon Yeul</creator><creator>Lee, Jeong-Hoon</creator><creator>Bae, Junho</creator><creator>Chang, Young</creator><creator>Cho, Yuri</creator><creator>Sinn, Dong Hyun</creator><creator>Kim, Bo Hyun</creator><creator>Kim, Seoung Hoon</creator><creator>Yi, Nam-Joon</creator><creator>Lee, Kwang-Woong</creator><creator>Kim, Jong Man</creator><creator>Park, Joong-Won</creator><creator>Kim, Yoon Jun</creator><creator>Yoon, Jung-Hwan</creator><creator>Joh, Jae-Won</creator><creator>Suh, Kyung-Suk</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5371-8177</orcidid><orcidid>https://orcid.org/0000-0002-4488-5352</orcidid><orcidid>https://orcid.org/0000-0001-9141-7773</orcidid><orcidid>https://orcid.org/0000-0002-0315-2080</orcidid></search><sort><creationdate>20200929</creationdate><title>Novel Model to Predict HCC Recurrence after Liver Transplantation Obtained Using Deep Learning: A Multicenter Study</title><author>Nam, Joon Yeul ; Lee, Jeong-Hoon ; Bae, Junho ; Chang, Young ; Cho, Yuri ; Sinn, Dong Hyun ; Kim, Bo Hyun ; Kim, Seoung Hoon ; Yi, Nam-Joon ; Lee, Kwang-Woong ; Kim, Jong Man ; Park, Joong-Won ; Kim, Yoon Jun ; Yoon, Jung-Hwan ; Joh, Jae-Won ; Suh, Kyung-Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-250ec8d3d7a30995457514ca5011404224affba88aebce337e44dce69e58d5943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Data integrity</topic><topic>Deep learning</topic><topic>Hepatitis B</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatoma</topic><topic>Laboratories</topic><topic>Liver</topic><topic>Liver transplantation</topic><topic>Medical prognosis</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Risk factors</topic><topic>Survival analysis</topic><topic>Transplantation</topic><topic>Variables</topic><topic>Vitamin K</topic><topic>α-Fetoprotein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Joon Yeul</creatorcontrib><creatorcontrib>Lee, Jeong-Hoon</creatorcontrib><creatorcontrib>Bae, Junho</creatorcontrib><creatorcontrib>Chang, Young</creatorcontrib><creatorcontrib>Cho, Yuri</creatorcontrib><creatorcontrib>Sinn, Dong Hyun</creatorcontrib><creatorcontrib>Kim, Bo Hyun</creatorcontrib><creatorcontrib>Kim, Seoung Hoon</creatorcontrib><creatorcontrib>Yi, Nam-Joon</creatorcontrib><creatorcontrib>Lee, Kwang-Woong</creatorcontrib><creatorcontrib>Kim, Jong Man</creatorcontrib><creatorcontrib>Park, Joong-Won</creatorcontrib><creatorcontrib>Kim, Yoon Jun</creatorcontrib><creatorcontrib>Yoon, Jung-Hwan</creatorcontrib><creatorcontrib>Joh, Jae-Won</creatorcontrib><creatorcontrib>Suh, Kyung-Suk</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Joon Yeul</au><au>Lee, Jeong-Hoon</au><au>Bae, Junho</au><au>Chang, Young</au><au>Cho, Yuri</au><au>Sinn, Dong Hyun</au><au>Kim, Bo Hyun</au><au>Kim, Seoung Hoon</au><au>Yi, Nam-Joon</au><au>Lee, Kwang-Woong</au><au>Kim, Jong Man</au><au>Park, Joong-Won</au><au>Kim, Yoon Jun</au><au>Yoon, Jung-Hwan</au><au>Joh, Jae-Won</au><au>Suh, Kyung-Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Model to Predict HCC Recurrence after Liver Transplantation Obtained Using Deep Learning: A Multicenter Study</atitle><jtitle>Cancers</jtitle><date>2020-09-29</date><risdate>2020</risdate><volume>12</volume><issue>10</issue><spage>2791</spage><pages>2791-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Several models have been developed using conventional regression approaches to extend the criteria for liver transplantation (LT) in hepatocellular carcinoma (HCC) beyond the Milan criteria. We aimed to develop a novel model to predict tumor recurrence after LT by adopting artificial intelligence (MoRAL-AI). This study included 563 patients who underwent LT for HCC at three large LT centers in Korea. Derivation (n = 349) and validation (n = 214) cohorts were independently established. The primary outcome was time-to-recurrence after LT. A MoRAL-AI was derived from the derivation cohort with a residual block-based deep neural network. The median follow-up duration was 74.7 months (interquartile-range, 18.5–107.4); 204 patients (36.2%) had HCC beyond the Milan criteria. The optimal model consisted of seven layers including two residual blocks. In the validation cohort, the MoRAL-AI showed significantly better discrimination function (c-index = 0.75) than the Milan (c-index = 0.64), MoRAL (c-index = 0.69), University of California San Francisco (c-index = 0.62), up-to-seven (c-index = 0.50), and Kyoto (c-index = 0.50) criteria (all p &lt; 0.001). The largest weighted parameter in the MoRAL-AI was tumor diameter, followed by alpha-fetoprotein, age, and protein induced by vitamin K absence-II. The MoRAL-AI had better predictability of tumor recurrence after LT than conventional models. The MoRAL-AI can also evolve with further data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33003306</pmid><doi>10.3390/cancers12102791</doi><orcidid>https://orcid.org/0000-0002-5371-8177</orcidid><orcidid>https://orcid.org/0000-0002-4488-5352</orcidid><orcidid>https://orcid.org/0000-0001-9141-7773</orcidid><orcidid>https://orcid.org/0000-0002-0315-2080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2020-09, Vol.12 (10), p.2791
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7650768
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Algorithms
Artificial intelligence
Data integrity
Deep learning
Hepatitis B
Hepatocellular carcinoma
Hepatoma
Laboratories
Liver
Liver transplantation
Medical prognosis
Neural networks
Regression analysis
Risk factors
Survival analysis
Transplantation
Variables
Vitamin K
α-Fetoprotein
title Novel Model to Predict HCC Recurrence after Liver Transplantation Obtained Using Deep Learning: A Multicenter Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Model%20to%20Predict%20HCC%20Recurrence%20after%20Liver%20Transplantation%20Obtained%20Using%20Deep%20Learning:%20A%20Multicenter%20Study&rft.jtitle=Cancers&rft.au=Nam,%20Joon%20Yeul&rft.date=2020-09-29&rft.volume=12&rft.issue=10&rft.spage=2791&rft.pages=2791-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers12102791&rft_dat=%3Cgale_pubme%3EA642768657%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547625441&rft_id=info:pmid/33003306&rft_galeid=A642768657&rfr_iscdi=true