Intrinsic Translocation Barrier as an Initial Step in Pausing by RNA Polymerase II
Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3′ end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documente...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2013-02, Vol.425 (4), p.697-712 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 712 |
---|---|
container_issue | 4 |
container_start_page | 697 |
container_title | Journal of molecular biology |
container_volume | 425 |
creator | Imashimizu, Masahiko Kireeva, Maria L. Lubkowska, Lucyna Gotte, Deanna Parks, Adam R. Strathern, Jeffrey N. Kashlev, Mikhail |
description | Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3′ end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documented cases, backtracking requires a special signal such as A/T-rich sequences forming an unstable RNA–DNA hybrid in the elongation complex. However, other sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient elongation factor TFIIS (TFIISAA) enhances backtracked pauses during regular transcription. This is due to increased efficiency of formation of an intermediate that leads to backtracking. This intermediate may involve misalignment at the 3′ end of the nascent RNA in the active center of the yeast RNAP II, and TFIISAA promotes formation of this intermediate at the DNA sequences, presenting a high-energy barrier to translocation. We proposed a three-step mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state increases the likelihood of the 3′ RNA end misalignment facilitating a backtrack pausing. These results demonstrate an important role of the intrinsic blocks to forward translocation in pausing by RNAP II.
[Display omitted]
► Backtracking on DNA is a major mechanism for pausing of RNAP II. ► Backtracking occurs at DNA sequences with high translocation barrier to RNAP II. ► TFIISAA induces pauses by promoting formation of the pre-backtracking intermediate. ► The intermediate is likely due to fraying of the 3′ RNA end from DNA template. |
doi_str_mv | 10.1016/j.jmb.2012.12.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7649676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283612009163</els_id><sourcerecordid>1285466817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-6ffec4d22270864c5d5f806aaa163c7592d5620f7fc95f743444c35be9f3051f3</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoTjv6A9xolm6qzbtSCMI4-CgYdJjHOtxOJW2aqqQnqR7of2-aHgfdKAQCyTmHc--H0GtKlpRQ9X6z3EyrJSOULeshhD1BC0p012jF9VO0qC-sYZqrE_SilA0hRHKhn6MTxhnXTPIFuurjnEMsweKbDLGMycIcUsSfIOfgMoaCIeI-hjnAiK9nt8Uh4kvYlRDXeLXHV9_P8GUa95PLUBzu-5fomYexuFcP9ym6_fL55vxbc_Hja39-dtFY2Yq5Ud47KwbGWEu0ElYO0muiAIAqblvZsUEqRnzrbSd9K7gQwnK5cp3nRFLPT9HHY-52t5rcYF2dBEazzWGCvDcJgvn7J4afZp3uTatEp1pVA949BOR0t3NlNlMo1o0jRJd2xdC6pbbriBL_lzIthVKatlVKj1KbUynZ-cdGlJgDNrMxFZs5YKs-UyFVz5s_R3l0_OZUBW-PAg_JwDqHYm6va4KsTIXU-tDww1Hh6srvKzlTbHDRuiFkZ2czpPCPAr8AMDiwmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285466817</pqid></control><display><type>article</type><title>Intrinsic Translocation Barrier as an Initial Step in Pausing by RNA Polymerase II</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Imashimizu, Masahiko ; Kireeva, Maria L. ; Lubkowska, Lucyna ; Gotte, Deanna ; Parks, Adam R. ; Strathern, Jeffrey N. ; Kashlev, Mikhail</creator><creatorcontrib>Imashimizu, Masahiko ; Kireeva, Maria L. ; Lubkowska, Lucyna ; Gotte, Deanna ; Parks, Adam R. ; Strathern, Jeffrey N. ; Kashlev, Mikhail</creatorcontrib><description>Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3′ end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documented cases, backtracking requires a special signal such as A/T-rich sequences forming an unstable RNA–DNA hybrid in the elongation complex. However, other sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient elongation factor TFIIS (TFIISAA) enhances backtracked pauses during regular transcription. This is due to increased efficiency of formation of an intermediate that leads to backtracking. This intermediate may involve misalignment at the 3′ end of the nascent RNA in the active center of the yeast RNAP II, and TFIISAA promotes formation of this intermediate at the DNA sequences, presenting a high-energy barrier to translocation. We proposed a three-step mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state increases the likelihood of the 3′ RNA end misalignment facilitating a backtrack pausing. These results demonstrate an important role of the intrinsic blocks to forward translocation in pausing by RNAP II.
[Display omitted]
► Backtracking on DNA is a major mechanism for pausing of RNAP II. ► Backtracking occurs at DNA sequences with high translocation barrier to RNAP II. ► TFIISAA induces pauses by promoting formation of the pre-backtracking intermediate. ► The intermediate is likely due to fraying of the 3′ RNA end from DNA template.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2012.12.002</identifier><identifier>PMID: 23238253</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>backtracking ; Base Sequence ; DNA ; DNA, Fungal - chemistry ; DNA, Fungal - genetics ; DNA-directed RNA polymerase ; Kinetics ; Models, Genetic ; Mutation ; nucleotide sequences ; pausing ; Protein Transport ; RNA ; RNA polymerase II ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; transcription elongation ; Transcription, Genetic ; Transcriptional Elongation Factors - genetics ; Transcriptional Elongation Factors - metabolism ; translocation ; yeasts</subject><ispartof>Journal of molecular biology, 2013-02, Vol.425 (4), p.697-712</ispartof><rights>2012</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-6ffec4d22270864c5d5f806aaa163c7592d5620f7fc95f743444c35be9f3051f3</citedby><cites>FETCH-LOGICAL-c574t-6ffec4d22270864c5d5f806aaa163c7592d5620f7fc95f743444c35be9f3051f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283612009163$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23238253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imashimizu, Masahiko</creatorcontrib><creatorcontrib>Kireeva, Maria L.</creatorcontrib><creatorcontrib>Lubkowska, Lucyna</creatorcontrib><creatorcontrib>Gotte, Deanna</creatorcontrib><creatorcontrib>Parks, Adam R.</creatorcontrib><creatorcontrib>Strathern, Jeffrey N.</creatorcontrib><creatorcontrib>Kashlev, Mikhail</creatorcontrib><title>Intrinsic Translocation Barrier as an Initial Step in Pausing by RNA Polymerase II</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3′ end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documented cases, backtracking requires a special signal such as A/T-rich sequences forming an unstable RNA–DNA hybrid in the elongation complex. However, other sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient elongation factor TFIIS (TFIISAA) enhances backtracked pauses during regular transcription. This is due to increased efficiency of formation of an intermediate that leads to backtracking. This intermediate may involve misalignment at the 3′ end of the nascent RNA in the active center of the yeast RNAP II, and TFIISAA promotes formation of this intermediate at the DNA sequences, presenting a high-energy barrier to translocation. We proposed a three-step mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state increases the likelihood of the 3′ RNA end misalignment facilitating a backtrack pausing. These results demonstrate an important role of the intrinsic blocks to forward translocation in pausing by RNAP II.
[Display omitted]
► Backtracking on DNA is a major mechanism for pausing of RNAP II. ► Backtracking occurs at DNA sequences with high translocation barrier to RNAP II. ► TFIISAA induces pauses by promoting formation of the pre-backtracking intermediate. ► The intermediate is likely due to fraying of the 3′ RNA end from DNA template.</description><subject>backtracking</subject><subject>Base Sequence</subject><subject>DNA</subject><subject>DNA, Fungal - chemistry</subject><subject>DNA, Fungal - genetics</subject><subject>DNA-directed RNA polymerase</subject><subject>Kinetics</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>nucleotide sequences</subject><subject>pausing</subject><subject>Protein Transport</subject><subject>RNA</subject><subject>RNA polymerase II</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>transcription elongation</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Elongation Factors - genetics</subject><subject>Transcriptional Elongation Factors - metabolism</subject><subject>translocation</subject><subject>yeasts</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFDEUhYMoTjv6A9xolm6qzbtSCMI4-CgYdJjHOtxOJW2aqqQnqR7of2-aHgfdKAQCyTmHc--H0GtKlpRQ9X6z3EyrJSOULeshhD1BC0p012jF9VO0qC-sYZqrE_SilA0hRHKhn6MTxhnXTPIFuurjnEMsweKbDLGMycIcUsSfIOfgMoaCIeI-hjnAiK9nt8Uh4kvYlRDXeLXHV9_P8GUa95PLUBzu-5fomYexuFcP9ym6_fL55vxbc_Hja39-dtFY2Yq5Ud47KwbGWEu0ElYO0muiAIAqblvZsUEqRnzrbSd9K7gQwnK5cp3nRFLPT9HHY-52t5rcYF2dBEazzWGCvDcJgvn7J4afZp3uTatEp1pVA949BOR0t3NlNlMo1o0jRJd2xdC6pbbriBL_lzIthVKatlVKj1KbUynZ-cdGlJgDNrMxFZs5YKs-UyFVz5s_R3l0_OZUBW-PAg_JwDqHYm6va4KsTIXU-tDww1Hh6srvKzlTbHDRuiFkZ2czpPCPAr8AMDiwmg</recordid><startdate>20130222</startdate><enddate>20130222</enddate><creator>Imashimizu, Masahiko</creator><creator>Kireeva, Maria L.</creator><creator>Lubkowska, Lucyna</creator><creator>Gotte, Deanna</creator><creator>Parks, Adam R.</creator><creator>Strathern, Jeffrey N.</creator><creator>Kashlev, Mikhail</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20130222</creationdate><title>Intrinsic Translocation Barrier as an Initial Step in Pausing by RNA Polymerase II</title><author>Imashimizu, Masahiko ; Kireeva, Maria L. ; Lubkowska, Lucyna ; Gotte, Deanna ; Parks, Adam R. ; Strathern, Jeffrey N. ; Kashlev, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-6ffec4d22270864c5d5f806aaa163c7592d5620f7fc95f743444c35be9f3051f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>backtracking</topic><topic>Base Sequence</topic><topic>DNA</topic><topic>DNA, Fungal - chemistry</topic><topic>DNA, Fungal - genetics</topic><topic>DNA-directed RNA polymerase</topic><topic>Kinetics</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>nucleotide sequences</topic><topic>pausing</topic><topic>Protein Transport</topic><topic>RNA</topic><topic>RNA polymerase II</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>transcription elongation</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Elongation Factors - genetics</topic><topic>Transcriptional Elongation Factors - metabolism</topic><topic>translocation</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imashimizu, Masahiko</creatorcontrib><creatorcontrib>Kireeva, Maria L.</creatorcontrib><creatorcontrib>Lubkowska, Lucyna</creatorcontrib><creatorcontrib>Gotte, Deanna</creatorcontrib><creatorcontrib>Parks, Adam R.</creatorcontrib><creatorcontrib>Strathern, Jeffrey N.</creatorcontrib><creatorcontrib>Kashlev, Mikhail</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imashimizu, Masahiko</au><au>Kireeva, Maria L.</au><au>Lubkowska, Lucyna</au><au>Gotte, Deanna</au><au>Parks, Adam R.</au><au>Strathern, Jeffrey N.</au><au>Kashlev, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Translocation Barrier as an Initial Step in Pausing by RNA Polymerase II</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2013-02-22</date><risdate>2013</risdate><volume>425</volume><issue>4</issue><spage>697</spage><epage>712</epage><pages>697-712</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3′ end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documented cases, backtracking requires a special signal such as A/T-rich sequences forming an unstable RNA–DNA hybrid in the elongation complex. However, other sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient elongation factor TFIIS (TFIISAA) enhances backtracked pauses during regular transcription. This is due to increased efficiency of formation of an intermediate that leads to backtracking. This intermediate may involve misalignment at the 3′ end of the nascent RNA in the active center of the yeast RNAP II, and TFIISAA promotes formation of this intermediate at the DNA sequences, presenting a high-energy barrier to translocation. We proposed a three-step mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state increases the likelihood of the 3′ RNA end misalignment facilitating a backtrack pausing. These results demonstrate an important role of the intrinsic blocks to forward translocation in pausing by RNAP II.
[Display omitted]
► Backtracking on DNA is a major mechanism for pausing of RNAP II. ► Backtracking occurs at DNA sequences with high translocation barrier to RNAP II. ► TFIISAA induces pauses by promoting formation of the pre-backtracking intermediate. ► The intermediate is likely due to fraying of the 3′ RNA end from DNA template.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23238253</pmid><doi>10.1016/j.jmb.2012.12.002</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2013-02, Vol.425 (4), p.697-712 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7649676 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | backtracking Base Sequence DNA DNA, Fungal - chemistry DNA, Fungal - genetics DNA-directed RNA polymerase Kinetics Models, Genetic Mutation nucleotide sequences pausing Protein Transport RNA RNA polymerase II RNA Polymerase II - genetics RNA Polymerase II - metabolism RNA, Fungal - genetics RNA, Fungal - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism transcription elongation Transcription, Genetic Transcriptional Elongation Factors - genetics Transcriptional Elongation Factors - metabolism translocation yeasts |
title | Intrinsic Translocation Barrier as an Initial Step in Pausing by RNA Polymerase II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Translocation%20Barrier%20as%20an%20Initial%20Step%20in%20Pausing%20by%20RNA%20Polymerase%20II&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Imashimizu,%20Masahiko&rft.date=2013-02-22&rft.volume=425&rft.issue=4&rft.spage=697&rft.epage=712&rft.pages=697-712&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2012.12.002&rft_dat=%3Cproquest_pubme%3E1285466817%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1285466817&rft_id=info:pmid/23238253&rft_els_id=S0022283612009163&rfr_iscdi=true |