Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells
Key message In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways. In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal...
Gespeichert in:
Veröffentlicht in: | Plant reproduction 2020-12, Vol.33 (3-4), p.143-158 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | 3-4 |
container_start_page | 143 |
container_title | Plant reproduction |
container_volume | 33 |
creator | Corral-Martínez, Patricia Siemons, Charlotte Horstman, Anneke Angenent, Gerco C. de Ruijter, Norbert Boutilier, Kim |
description | Key message
In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways.
In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the
Brassica napus
microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of
LEAFY COTYLEDON1
-expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established. |
doi_str_mv | 10.1007/s00497-020-00391-z |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7648746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640952086</galeid><sourcerecordid>A640952086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462z-8df9c023ccf901c1b5e650b27232750c323a82d7e2aca8b956386f06c538db383</originalsourceid><addsrcrecordid>eNp9kluP1CAUxxujcTfrfgEfDIkv-tD1AC20Lybrxsskk5h4eSYMpR02LVSgE2e-iF9XasfR8cEQAuH8zpV_lj3FcIMB-KsAUNQ8BwI5AK1xfniQXRJcFzmvGX54upf0IrsO4R4AMFBcQvE4u6CElZgTfpn9WJudRqtBdsZ2yLVIDxu_d522RqEQ_aTi5HVAxqI3XoZglERWjlNAg1HehdF5ffRBauoXeGu6bZ92DChuNWr0TvduHLSNskdjL0M0ysT9nM7YZlK6QdFFM7qYEKR034cn2aNW9kFfH8-r7Ou7t1_uPuTrj-9Xd7frXBWMHPKqaWsFhCrV1oAV3pSalbAhnFDCS1CUUFmRhmsilaw2dcloxVpgqqRVs6EVvcpeL3HHaTPoRqUCvOzF6M0g_V44acS5xZqt6NxOcFZUvGApwItjAO--TTpEMZgwtyCtdlMQpCAUGCdFkdDn_6D3bvI2tZcojkteknqu6GahOtlrYWzrUl6VVqPTyJ3VrUnvt6yAuiRQzRW8PHNITNTfYyenEMTq86dzlizs_HfB6_bUKQYx60osuhJJV-KXrsQhOT37e0Ynl98qSgBdgJBMttP-T2P_CfsTaKPcXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471575298</pqid></control><display><type>article</type><title>Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Corral-Martínez, Patricia ; Siemons, Charlotte ; Horstman, Anneke ; Angenent, Gerco C. ; de Ruijter, Norbert ; Boutilier, Kim</creator><creatorcontrib>Corral-Martínez, Patricia ; Siemons, Charlotte ; Horstman, Anneke ; Angenent, Gerco C. ; de Ruijter, Norbert ; Boutilier, Kim</creatorcontrib><description>Key message
In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways.
In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the
Brassica napus
microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of
LEAFY COTYLEDON1
-expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.</description><identifier>ISSN: 2194-7953</identifier><identifier>EISSN: 2194-7961</identifier><identifier>DOI: 10.1007/s00497-020-00391-z</identifier><identifier>PMID: 32651727</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Angiosperms ; Biomedical and Life Sciences ; Brassica ; Brassica napus ; Brassica napus - anatomy & histology ; Brassica napus - embryology ; Brassica napus - genetics ; Callus ; Cell Biology ; Cell culture ; Cell division ; Cell fate ; Cell Plasticity ; Clusters ; Developmental plasticity ; Embryo ; Embryogenesis ; Embryonic development ; Embryonic growth stage ; Embryos ; Fertilization ; Haploidy ; Life Sciences ; Morphology ; Original ; Original Article ; Plant Sciences ; Plastic properties ; Plasticity ; Pollen ; Rape plants ; Rupture ; Rupturing ; Seedlings ; Seeds - anatomy & histology ; Tissue culture ; Totipotent Stem Cells - cytology</subject><ispartof>Plant reproduction, 2020-12, Vol.33 (3-4), p.143-158</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462z-8df9c023ccf901c1b5e650b27232750c323a82d7e2aca8b956386f06c538db383</citedby><cites>FETCH-LOGICAL-c462z-8df9c023ccf901c1b5e650b27232750c323a82d7e2aca8b956386f06c538db383</cites><orcidid>0000-0001-6110-5939 ; 0000-0002-4203-4167 ; 0000-0003-2971-2047 ; 0000-0003-3746-9403 ; 0000-0002-2342-3116 ; 0000-0003-4051-1078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00497-020-00391-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00497-020-00391-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32651727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corral-Martínez, Patricia</creatorcontrib><creatorcontrib>Siemons, Charlotte</creatorcontrib><creatorcontrib>Horstman, Anneke</creatorcontrib><creatorcontrib>Angenent, Gerco C.</creatorcontrib><creatorcontrib>de Ruijter, Norbert</creatorcontrib><creatorcontrib>Boutilier, Kim</creatorcontrib><title>Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells</title><title>Plant reproduction</title><addtitle>Plant Reprod</addtitle><addtitle>Plant Reprod</addtitle><description>Key message
In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways.
In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the
Brassica napus
microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of
LEAFY COTYLEDON1
-expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.</description><subject>Agriculture</subject><subject>Angiosperms</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica</subject><subject>Brassica napus</subject><subject>Brassica napus - anatomy & histology</subject><subject>Brassica napus - embryology</subject><subject>Brassica napus - genetics</subject><subject>Callus</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cell division</subject><subject>Cell fate</subject><subject>Cell Plasticity</subject><subject>Clusters</subject><subject>Developmental plasticity</subject><subject>Embryo</subject><subject>Embryogenesis</subject><subject>Embryonic development</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Fertilization</subject><subject>Haploidy</subject><subject>Life Sciences</subject><subject>Morphology</subject><subject>Original</subject><subject>Original Article</subject><subject>Plant Sciences</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Pollen</subject><subject>Rape plants</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>Seedlings</subject><subject>Seeds - anatomy & histology</subject><subject>Tissue culture</subject><subject>Totipotent Stem Cells - cytology</subject><issn>2194-7953</issn><issn>2194-7961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kluP1CAUxxujcTfrfgEfDIkv-tD1AC20Lybrxsskk5h4eSYMpR02LVSgE2e-iF9XasfR8cEQAuH8zpV_lj3FcIMB-KsAUNQ8BwI5AK1xfniQXRJcFzmvGX54upf0IrsO4R4AMFBcQvE4u6CElZgTfpn9WJudRqtBdsZ2yLVIDxu_d522RqEQ_aTi5HVAxqI3XoZglERWjlNAg1HehdF5ffRBauoXeGu6bZ92DChuNWr0TvduHLSNskdjL0M0ysT9nM7YZlK6QdFFM7qYEKR034cn2aNW9kFfH8-r7Ou7t1_uPuTrj-9Xd7frXBWMHPKqaWsFhCrV1oAV3pSalbAhnFDCS1CUUFmRhmsilaw2dcloxVpgqqRVs6EVvcpeL3HHaTPoRqUCvOzF6M0g_V44acS5xZqt6NxOcFZUvGApwItjAO--TTpEMZgwtyCtdlMQpCAUGCdFkdDn_6D3bvI2tZcojkteknqu6GahOtlrYWzrUl6VVqPTyJ3VrUnvt6yAuiRQzRW8PHNITNTfYyenEMTq86dzlizs_HfB6_bUKQYx60osuhJJV-KXrsQhOT37e0Ynl98qSgBdgJBMttP-T2P_CfsTaKPcXw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Corral-Martínez, Patricia</creator><creator>Siemons, Charlotte</creator><creator>Horstman, Anneke</creator><creator>Angenent, Gerco C.</creator><creator>de Ruijter, Norbert</creator><creator>Boutilier, Kim</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6110-5939</orcidid><orcidid>https://orcid.org/0000-0002-4203-4167</orcidid><orcidid>https://orcid.org/0000-0003-2971-2047</orcidid><orcidid>https://orcid.org/0000-0003-3746-9403</orcidid><orcidid>https://orcid.org/0000-0002-2342-3116</orcidid><orcidid>https://orcid.org/0000-0003-4051-1078</orcidid></search><sort><creationdate>20201201</creationdate><title>Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells</title><author>Corral-Martínez, Patricia ; Siemons, Charlotte ; Horstman, Anneke ; Angenent, Gerco C. ; de Ruijter, Norbert ; Boutilier, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462z-8df9c023ccf901c1b5e650b27232750c323a82d7e2aca8b956386f06c538db383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Angiosperms</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica</topic><topic>Brassica napus</topic><topic>Brassica napus - anatomy & histology</topic><topic>Brassica napus - embryology</topic><topic>Brassica napus - genetics</topic><topic>Callus</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cell division</topic><topic>Cell fate</topic><topic>Cell Plasticity</topic><topic>Clusters</topic><topic>Developmental plasticity</topic><topic>Embryo</topic><topic>Embryogenesis</topic><topic>Embryonic development</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Fertilization</topic><topic>Haploidy</topic><topic>Life Sciences</topic><topic>Morphology</topic><topic>Original</topic><topic>Original Article</topic><topic>Plant Sciences</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Pollen</topic><topic>Rape plants</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>Seedlings</topic><topic>Seeds - anatomy & histology</topic><topic>Tissue culture</topic><topic>Totipotent Stem Cells - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corral-Martínez, Patricia</creatorcontrib><creatorcontrib>Siemons, Charlotte</creatorcontrib><creatorcontrib>Horstman, Anneke</creatorcontrib><creatorcontrib>Angenent, Gerco C.</creatorcontrib><creatorcontrib>de Ruijter, Norbert</creatorcontrib><creatorcontrib>Boutilier, Kim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corral-Martínez, Patricia</au><au>Siemons, Charlotte</au><au>Horstman, Anneke</au><au>Angenent, Gerco C.</au><au>de Ruijter, Norbert</au><au>Boutilier, Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells</atitle><jtitle>Plant reproduction</jtitle><stitle>Plant Reprod</stitle><addtitle>Plant Reprod</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>33</volume><issue>3-4</issue><spage>143</spage><epage>158</epage><pages>143-158</pages><issn>2194-7953</issn><eissn>2194-7961</eissn><abstract>Key message
In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways.
In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the
Brassica napus
microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of
LEAFY COTYLEDON1
-expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32651727</pmid><doi>10.1007/s00497-020-00391-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6110-5939</orcidid><orcidid>https://orcid.org/0000-0002-4203-4167</orcidid><orcidid>https://orcid.org/0000-0003-2971-2047</orcidid><orcidid>https://orcid.org/0000-0003-3746-9403</orcidid><orcidid>https://orcid.org/0000-0002-2342-3116</orcidid><orcidid>https://orcid.org/0000-0003-4051-1078</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-7953 |
ispartof | Plant reproduction, 2020-12, Vol.33 (3-4), p.143-158 |
issn | 2194-7953 2194-7961 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7648746 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Agriculture Angiosperms Biomedical and Life Sciences Brassica Brassica napus Brassica napus - anatomy & histology Brassica napus - embryology Brassica napus - genetics Callus Cell Biology Cell culture Cell division Cell fate Cell Plasticity Clusters Developmental plasticity Embryo Embryogenesis Embryonic development Embryonic growth stage Embryos Fertilization Haploidy Life Sciences Morphology Original Original Article Plant Sciences Plastic properties Plasticity Pollen Rape plants Rupture Rupturing Seedlings Seeds - anatomy & histology Tissue culture Totipotent Stem Cells - cytology |
title | Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Live%20Imaging%20of%20embryogenic%20structures%20in%20Brassica%20napus%20microspore%20embryo%20cultures%20highlights%20the%20developmental%20plasticity%20of%20induced%20totipotent%20cells&rft.jtitle=Plant%20reproduction&rft.au=Corral-Mart%C3%ADnez,%20Patricia&rft.date=2020-12-01&rft.volume=33&rft.issue=3-4&rft.spage=143&rft.epage=158&rft.pages=143-158&rft.issn=2194-7953&rft.eissn=2194-7961&rft_id=info:doi/10.1007/s00497-020-00391-z&rft_dat=%3Cgale_pubme%3EA640952086%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471575298&rft_id=info:pmid/32651727&rft_galeid=A640952086&rfr_iscdi=true |