Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells

Key message In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways. In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant reproduction 2020-12, Vol.33 (3-4), p.143-158
Hauptverfasser: Corral-Martínez, Patricia, Siemons, Charlotte, Horstman, Anneke, Angenent, Gerco C., de Ruijter, Norbert, Boutilier, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 3-4
container_start_page 143
container_title Plant reproduction
container_volume 33
creator Corral-Martínez, Patricia
Siemons, Charlotte
Horstman, Anneke
Angenent, Gerco C.
de Ruijter, Norbert
Boutilier, Kim
description Key message In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways. In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the Brassica napus microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of LEAFY COTYLEDON1 -expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.
doi_str_mv 10.1007/s00497-020-00391-z
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7648746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A640952086</galeid><sourcerecordid>A640952086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462z-8df9c023ccf901c1b5e650b27232750c323a82d7e2aca8b956386f06c538db383</originalsourceid><addsrcrecordid>eNp9kluP1CAUxxujcTfrfgEfDIkv-tD1AC20Lybrxsskk5h4eSYMpR02LVSgE2e-iF9XasfR8cEQAuH8zpV_lj3FcIMB-KsAUNQ8BwI5AK1xfniQXRJcFzmvGX54upf0IrsO4R4AMFBcQvE4u6CElZgTfpn9WJudRqtBdsZ2yLVIDxu_d522RqEQ_aTi5HVAxqI3XoZglERWjlNAg1HehdF5ffRBauoXeGu6bZ92DChuNWr0TvduHLSNskdjL0M0ysT9nM7YZlK6QdFFM7qYEKR034cn2aNW9kFfH8-r7Ou7t1_uPuTrj-9Xd7frXBWMHPKqaWsFhCrV1oAV3pSalbAhnFDCS1CUUFmRhmsilaw2dcloxVpgqqRVs6EVvcpeL3HHaTPoRqUCvOzF6M0g_V44acS5xZqt6NxOcFZUvGApwItjAO--TTpEMZgwtyCtdlMQpCAUGCdFkdDn_6D3bvI2tZcojkteknqu6GahOtlrYWzrUl6VVqPTyJ3VrUnvt6yAuiRQzRW8PHNITNTfYyenEMTq86dzlizs_HfB6_bUKQYx60osuhJJV-KXrsQhOT37e0Ynl98qSgBdgJBMttP-T2P_CfsTaKPcXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471575298</pqid></control><display><type>article</type><title>Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Corral-Martínez, Patricia ; Siemons, Charlotte ; Horstman, Anneke ; Angenent, Gerco C. ; de Ruijter, Norbert ; Boutilier, Kim</creator><creatorcontrib>Corral-Martínez, Patricia ; Siemons, Charlotte ; Horstman, Anneke ; Angenent, Gerco C. ; de Ruijter, Norbert ; Boutilier, Kim</creatorcontrib><description>Key message In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways. In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the Brassica napus microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of LEAFY COTYLEDON1 -expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.</description><identifier>ISSN: 2194-7953</identifier><identifier>EISSN: 2194-7961</identifier><identifier>DOI: 10.1007/s00497-020-00391-z</identifier><identifier>PMID: 32651727</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Angiosperms ; Biomedical and Life Sciences ; Brassica ; Brassica napus ; Brassica napus - anatomy &amp; histology ; Brassica napus - embryology ; Brassica napus - genetics ; Callus ; Cell Biology ; Cell culture ; Cell division ; Cell fate ; Cell Plasticity ; Clusters ; Developmental plasticity ; Embryo ; Embryogenesis ; Embryonic development ; Embryonic growth stage ; Embryos ; Fertilization ; Haploidy ; Life Sciences ; Morphology ; Original ; Original Article ; Plant Sciences ; Plastic properties ; Plasticity ; Pollen ; Rape plants ; Rupture ; Rupturing ; Seedlings ; Seeds - anatomy &amp; histology ; Tissue culture ; Totipotent Stem Cells - cytology</subject><ispartof>Plant reproduction, 2020-12, Vol.33 (3-4), p.143-158</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462z-8df9c023ccf901c1b5e650b27232750c323a82d7e2aca8b956386f06c538db383</citedby><cites>FETCH-LOGICAL-c462z-8df9c023ccf901c1b5e650b27232750c323a82d7e2aca8b956386f06c538db383</cites><orcidid>0000-0001-6110-5939 ; 0000-0002-4203-4167 ; 0000-0003-2971-2047 ; 0000-0003-3746-9403 ; 0000-0002-2342-3116 ; 0000-0003-4051-1078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00497-020-00391-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00497-020-00391-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32651727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corral-Martínez, Patricia</creatorcontrib><creatorcontrib>Siemons, Charlotte</creatorcontrib><creatorcontrib>Horstman, Anneke</creatorcontrib><creatorcontrib>Angenent, Gerco C.</creatorcontrib><creatorcontrib>de Ruijter, Norbert</creatorcontrib><creatorcontrib>Boutilier, Kim</creatorcontrib><title>Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells</title><title>Plant reproduction</title><addtitle>Plant Reprod</addtitle><addtitle>Plant Reprod</addtitle><description>Key message In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways. In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the Brassica napus microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of LEAFY COTYLEDON1 -expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.</description><subject>Agriculture</subject><subject>Angiosperms</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica</subject><subject>Brassica napus</subject><subject>Brassica napus - anatomy &amp; histology</subject><subject>Brassica napus - embryology</subject><subject>Brassica napus - genetics</subject><subject>Callus</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cell division</subject><subject>Cell fate</subject><subject>Cell Plasticity</subject><subject>Clusters</subject><subject>Developmental plasticity</subject><subject>Embryo</subject><subject>Embryogenesis</subject><subject>Embryonic development</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Fertilization</subject><subject>Haploidy</subject><subject>Life Sciences</subject><subject>Morphology</subject><subject>Original</subject><subject>Original Article</subject><subject>Plant Sciences</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Pollen</subject><subject>Rape plants</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>Seedlings</subject><subject>Seeds - anatomy &amp; histology</subject><subject>Tissue culture</subject><subject>Totipotent Stem Cells - cytology</subject><issn>2194-7953</issn><issn>2194-7961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kluP1CAUxxujcTfrfgEfDIkv-tD1AC20Lybrxsskk5h4eSYMpR02LVSgE2e-iF9XasfR8cEQAuH8zpV_lj3FcIMB-KsAUNQ8BwI5AK1xfniQXRJcFzmvGX54upf0IrsO4R4AMFBcQvE4u6CElZgTfpn9WJudRqtBdsZ2yLVIDxu_d522RqEQ_aTi5HVAxqI3XoZglERWjlNAg1HehdF5ffRBauoXeGu6bZ92DChuNWr0TvduHLSNskdjL0M0ysT9nM7YZlK6QdFFM7qYEKR034cn2aNW9kFfH8-r7Ou7t1_uPuTrj-9Xd7frXBWMHPKqaWsFhCrV1oAV3pSalbAhnFDCS1CUUFmRhmsilaw2dcloxVpgqqRVs6EVvcpeL3HHaTPoRqUCvOzF6M0g_V44acS5xZqt6NxOcFZUvGApwItjAO--TTpEMZgwtyCtdlMQpCAUGCdFkdDn_6D3bvI2tZcojkteknqu6GahOtlrYWzrUl6VVqPTyJ3VrUnvt6yAuiRQzRW8PHNITNTfYyenEMTq86dzlizs_HfB6_bUKQYx60osuhJJV-KXrsQhOT37e0Ynl98qSgBdgJBMttP-T2P_CfsTaKPcXw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Corral-Martínez, Patricia</creator><creator>Siemons, Charlotte</creator><creator>Horstman, Anneke</creator><creator>Angenent, Gerco C.</creator><creator>de Ruijter, Norbert</creator><creator>Boutilier, Kim</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6110-5939</orcidid><orcidid>https://orcid.org/0000-0002-4203-4167</orcidid><orcidid>https://orcid.org/0000-0003-2971-2047</orcidid><orcidid>https://orcid.org/0000-0003-3746-9403</orcidid><orcidid>https://orcid.org/0000-0002-2342-3116</orcidid><orcidid>https://orcid.org/0000-0003-4051-1078</orcidid></search><sort><creationdate>20201201</creationdate><title>Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells</title><author>Corral-Martínez, Patricia ; Siemons, Charlotte ; Horstman, Anneke ; Angenent, Gerco C. ; de Ruijter, Norbert ; Boutilier, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462z-8df9c023ccf901c1b5e650b27232750c323a82d7e2aca8b956386f06c538db383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Angiosperms</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica</topic><topic>Brassica napus</topic><topic>Brassica napus - anatomy &amp; histology</topic><topic>Brassica napus - embryology</topic><topic>Brassica napus - genetics</topic><topic>Callus</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cell division</topic><topic>Cell fate</topic><topic>Cell Plasticity</topic><topic>Clusters</topic><topic>Developmental plasticity</topic><topic>Embryo</topic><topic>Embryogenesis</topic><topic>Embryonic development</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Fertilization</topic><topic>Haploidy</topic><topic>Life Sciences</topic><topic>Morphology</topic><topic>Original</topic><topic>Original Article</topic><topic>Plant Sciences</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Pollen</topic><topic>Rape plants</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>Seedlings</topic><topic>Seeds - anatomy &amp; histology</topic><topic>Tissue culture</topic><topic>Totipotent Stem Cells - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corral-Martínez, Patricia</creatorcontrib><creatorcontrib>Siemons, Charlotte</creatorcontrib><creatorcontrib>Horstman, Anneke</creatorcontrib><creatorcontrib>Angenent, Gerco C.</creatorcontrib><creatorcontrib>de Ruijter, Norbert</creatorcontrib><creatorcontrib>Boutilier, Kim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant reproduction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corral-Martínez, Patricia</au><au>Siemons, Charlotte</au><au>Horstman, Anneke</au><au>Angenent, Gerco C.</au><au>de Ruijter, Norbert</au><au>Boutilier, Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells</atitle><jtitle>Plant reproduction</jtitle><stitle>Plant Reprod</stitle><addtitle>Plant Reprod</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>33</volume><issue>3-4</issue><spage>143</spage><epage>158</epage><pages>143-158</pages><issn>2194-7953</issn><eissn>2194-7961</eissn><abstract>Key message In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways. In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the Brassica napus microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of LEAFY COTYLEDON1 -expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32651727</pmid><doi>10.1007/s00497-020-00391-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6110-5939</orcidid><orcidid>https://orcid.org/0000-0002-4203-4167</orcidid><orcidid>https://orcid.org/0000-0003-2971-2047</orcidid><orcidid>https://orcid.org/0000-0003-3746-9403</orcidid><orcidid>https://orcid.org/0000-0002-2342-3116</orcidid><orcidid>https://orcid.org/0000-0003-4051-1078</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-7953
ispartof Plant reproduction, 2020-12, Vol.33 (3-4), p.143-158
issn 2194-7953
2194-7961
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7648746
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Agriculture
Angiosperms
Biomedical and Life Sciences
Brassica
Brassica napus
Brassica napus - anatomy & histology
Brassica napus - embryology
Brassica napus - genetics
Callus
Cell Biology
Cell culture
Cell division
Cell fate
Cell Plasticity
Clusters
Developmental plasticity
Embryo
Embryogenesis
Embryonic development
Embryonic growth stage
Embryos
Fertilization
Haploidy
Life Sciences
Morphology
Original
Original Article
Plant Sciences
Plastic properties
Plasticity
Pollen
Rape plants
Rupture
Rupturing
Seedlings
Seeds - anatomy & histology
Tissue culture
Totipotent Stem Cells - cytology
title Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Live%20Imaging%20of%20embryogenic%20structures%20in%20Brassica%20napus%20microspore%20embryo%20cultures%20highlights%20the%20developmental%20plasticity%20of%20induced%20totipotent%20cells&rft.jtitle=Plant%20reproduction&rft.au=Corral-Mart%C3%ADnez,%20Patricia&rft.date=2020-12-01&rft.volume=33&rft.issue=3-4&rft.spage=143&rft.epage=158&rft.pages=143-158&rft.issn=2194-7953&rft.eissn=2194-7961&rft_id=info:doi/10.1007/s00497-020-00391-z&rft_dat=%3Cgale_pubme%3EA640952086%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471575298&rft_id=info:pmid/32651727&rft_galeid=A640952086&rfr_iscdi=true