Complex roles of the actin‐binding protein Girdin/GIV in DNA damage‐induced apoptosis of cancer cells

The actin‐binding protein Girdin is a hub protein that interacts with multiple proteins to regulate motility and Akt and trimeric G protein signaling in cancer cells. Girdin expression correlates with poor outcomes in multiple human cancers. However, those findings are not universal, as they depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2020-11, Vol.111 (11), p.4303-4317
Hauptverfasser: Chen, Chen, Enomoto, Atsushi, Weng, Liang, Taki, Tetsuro, Shiraki, Yukihiro, Mii, Shinji, Ichihara, Ryosuke, Kanda, Mitsuro, Koike, Masahiko, Kodera, Yasuhiro, Takahashi, Masahide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4317
container_issue 11
container_start_page 4303
container_title Cancer science
container_volume 111
creator Chen, Chen
Enomoto, Atsushi
Weng, Liang
Taki, Tetsuro
Shiraki, Yukihiro
Mii, Shinji
Ichihara, Ryosuke
Kanda, Mitsuro
Koike, Masahiko
Kodera, Yasuhiro
Takahashi, Masahide
description The actin‐binding protein Girdin is a hub protein that interacts with multiple proteins to regulate motility and Akt and trimeric G protein signaling in cancer cells. Girdin expression correlates with poor outcomes in multiple human cancers. However, those findings are not universal, as they depend on study conditions. Those data suggest that multiple aspects of Girdin function and its role in tumor cell responses to anticancer therapeutics must be reconsidered. In the present study, we found that Girdin is involved in DNA damage‐induced cancer cell apoptosis. An esophageal cancer cell line that exhibited high Girdin expression showed a marked sensitivity to UV‐mediated DNA damage compared to a line with low Girdin expression. When transcriptional activation of endogenous Girdin was mediated by an engineered CRISPR/Cas9 activation system, sensitivity to DNA damage increased in both stationary and migrating HeLa cancer cells. High Girdin expression was associated with dysregulated cell cycle progression and prolonged G1 and M phases. These features were accompanied by p53 activation, which conceivably increases cancer cell vulnerability to UV exposure. These data highlight the importance of understanding complex Girdin functions that influence cancer cell sensitivity to therapeutics. The present study suggests that Girdin overexpression perturbs cell cycle distribution with prolonged G1 and M phases and aberrant p53 activation, which leads to an increase in sensitivity to DNA damage. It also showed that the upregulation of the spindle checkpoint protein Mad2 in Girdin‐overexpressing cells could be involved in dysregulated cell cycle progression.
doi_str_mv 10.1111/cas.14637
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7648047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458218008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5337-8301c4bc4290850c1936f91e0433c53dc5140e302669366956cf0083face4fd83</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi1ERcuWAy-ALHGBQ7p27Dj2BWm1pUulCg4FrpbXmWxdJXawE0pvPALP2CfBu9tWgIQv49F8-jSjH6GXlJzQ_ObWpBPKBaufoCPKuCpqQsTT3b8uFGHlIXqe0jUhTHDFn6FDVsq6EkodIbcM_dDBDxxDBwmHFo9XgI0dnb_7-WvtfOP8Bg8xjOA8XrmY-_nq_CvO3enHBW5MbzaQ0UxOFhpshjCMIbmdyxpvIWILXZeO0UFrugQv7usMfTl7_3n5obj4tDpfLi4KWzFWF5IRavna8lIRWRFLFROtokA4Y5lobEU5AUZKIfJEqErYlhDJWmOBt41kM_Ru7x2mdQ-NBT9G0-khut7EWx2M039PvLvSm_Bd14JLwusseHMviOHbBGnUvUvbE4yHMCVdcqZEyWrJMvr6H_Q6TNHn8zJVyZLK7Woz9HZP2RhSitA-LkOJ3gaoc4B6F2BmX_25_SP5kFgG5nvgxnVw-3-TXi4u98rfsaKl-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458218008</pqid></control><display><type>article</type><title>Complex roles of the actin‐binding protein Girdin/GIV in DNA damage‐induced apoptosis of cancer cells</title><source>Wiley Online Library Journals【Remote access available】</source><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Chen, Chen ; Enomoto, Atsushi ; Weng, Liang ; Taki, Tetsuro ; Shiraki, Yukihiro ; Mii, Shinji ; Ichihara, Ryosuke ; Kanda, Mitsuro ; Koike, Masahiko ; Kodera, Yasuhiro ; Takahashi, Masahide</creator><creatorcontrib>Chen, Chen ; Enomoto, Atsushi ; Weng, Liang ; Taki, Tetsuro ; Shiraki, Yukihiro ; Mii, Shinji ; Ichihara, Ryosuke ; Kanda, Mitsuro ; Koike, Masahiko ; Kodera, Yasuhiro ; Takahashi, Masahide</creatorcontrib><description>The actin‐binding protein Girdin is a hub protein that interacts with multiple proteins to regulate motility and Akt and trimeric G protein signaling in cancer cells. Girdin expression correlates with poor outcomes in multiple human cancers. However, those findings are not universal, as they depend on study conditions. Those data suggest that multiple aspects of Girdin function and its role in tumor cell responses to anticancer therapeutics must be reconsidered. In the present study, we found that Girdin is involved in DNA damage‐induced cancer cell apoptosis. An esophageal cancer cell line that exhibited high Girdin expression showed a marked sensitivity to UV‐mediated DNA damage compared to a line with low Girdin expression. When transcriptional activation of endogenous Girdin was mediated by an engineered CRISPR/Cas9 activation system, sensitivity to DNA damage increased in both stationary and migrating HeLa cancer cells. High Girdin expression was associated with dysregulated cell cycle progression and prolonged G1 and M phases. These features were accompanied by p53 activation, which conceivably increases cancer cell vulnerability to UV exposure. These data highlight the importance of understanding complex Girdin functions that influence cancer cell sensitivity to therapeutics. The present study suggests that Girdin overexpression perturbs cell cycle distribution with prolonged G1 and M phases and aberrant p53 activation, which leads to an increase in sensitivity to DNA damage. It also showed that the upregulation of the spindle checkpoint protein Mad2 in Girdin‐overexpressing cells could be involved in dysregulated cell cycle progression.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.14637</identifier><identifier>PMID: 32875699</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Actin ; Aged ; Aged, 80 and over ; AKT protein ; Animals ; Apoptosis ; Apoptosis - genetics ; Biomarkers ; Brain cancer ; Cancer ; cancer cell heterogeneity ; Cancer therapies ; Cell adhesion &amp; migration ; Cell Cycle ; Cell growth ; Cell Line, Tumor ; cell migration ; CRISPR ; Cytotoxicity ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Damage - radiation effects ; Esophageal Neoplasms - genetics ; Esophageal Neoplasms - pathology ; Esophageal Neoplasms - radiotherapy ; Esophagus ; Female ; Genomes ; Girdin ; HeLa Cells ; Humans ; Kinases ; Male ; Microfilament Proteins - genetics ; Microfilament Proteins - metabolism ; Middle Aged ; Mitosis ; Models, Biological ; Neoplasm Grading ; Neoplasm Staging ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - mortality ; Neoplasms - pathology ; Original ; p53 Protein ; Prognosis ; Proteins ; Reagents ; Stem cells ; Transcription activation ; Ultraviolet radiation ; Ultraviolet Rays ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism</subject><ispartof>Cancer science, 2020-11, Vol.111 (11), p.4303-4317</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association</rights><rights>2020 The Authors. Cancer Science published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5337-8301c4bc4290850c1936f91e0433c53dc5140e302669366956cf0083face4fd83</citedby><cites>FETCH-LOGICAL-c5337-8301c4bc4290850c1936f91e0433c53dc5140e302669366956cf0083face4fd83</cites><orcidid>0000-0002-9206-6116 ; 0000-0001-8654-6896 ; 0000-0001-8266-3235 ; 0000-0002-2803-2683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648047/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648047/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32875699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Enomoto, Atsushi</creatorcontrib><creatorcontrib>Weng, Liang</creatorcontrib><creatorcontrib>Taki, Tetsuro</creatorcontrib><creatorcontrib>Shiraki, Yukihiro</creatorcontrib><creatorcontrib>Mii, Shinji</creatorcontrib><creatorcontrib>Ichihara, Ryosuke</creatorcontrib><creatorcontrib>Kanda, Mitsuro</creatorcontrib><creatorcontrib>Koike, Masahiko</creatorcontrib><creatorcontrib>Kodera, Yasuhiro</creatorcontrib><creatorcontrib>Takahashi, Masahide</creatorcontrib><title>Complex roles of the actin‐binding protein Girdin/GIV in DNA damage‐induced apoptosis of cancer cells</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>The actin‐binding protein Girdin is a hub protein that interacts with multiple proteins to regulate motility and Akt and trimeric G protein signaling in cancer cells. Girdin expression correlates with poor outcomes in multiple human cancers. However, those findings are not universal, as they depend on study conditions. Those data suggest that multiple aspects of Girdin function and its role in tumor cell responses to anticancer therapeutics must be reconsidered. In the present study, we found that Girdin is involved in DNA damage‐induced cancer cell apoptosis. An esophageal cancer cell line that exhibited high Girdin expression showed a marked sensitivity to UV‐mediated DNA damage compared to a line with low Girdin expression. When transcriptional activation of endogenous Girdin was mediated by an engineered CRISPR/Cas9 activation system, sensitivity to DNA damage increased in both stationary and migrating HeLa cancer cells. High Girdin expression was associated with dysregulated cell cycle progression and prolonged G1 and M phases. These features were accompanied by p53 activation, which conceivably increases cancer cell vulnerability to UV exposure. These data highlight the importance of understanding complex Girdin functions that influence cancer cell sensitivity to therapeutics. The present study suggests that Girdin overexpression perturbs cell cycle distribution with prolonged G1 and M phases and aberrant p53 activation, which leads to an increase in sensitivity to DNA damage. It also showed that the upregulation of the spindle checkpoint protein Mad2 in Girdin‐overexpressing cells could be involved in dysregulated cell cycle progression.</description><subject>Actin</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Biomarkers</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>cancer cell heterogeneity</subject><subject>Cancer therapies</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Cycle</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>cell migration</subject><subject>CRISPR</subject><subject>Cytotoxicity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - radiation effects</subject><subject>Esophageal Neoplasms - genetics</subject><subject>Esophageal Neoplasms - pathology</subject><subject>Esophageal Neoplasms - radiotherapy</subject><subject>Esophagus</subject><subject>Female</subject><subject>Genomes</subject><subject>Girdin</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinases</subject><subject>Male</subject><subject>Microfilament Proteins - genetics</subject><subject>Microfilament Proteins - metabolism</subject><subject>Middle Aged</subject><subject>Mitosis</subject><subject>Models, Biological</subject><subject>Neoplasm Grading</subject><subject>Neoplasm Staging</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - mortality</subject><subject>Neoplasms - pathology</subject><subject>Original</subject><subject>p53 Protein</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Reagents</subject><subject>Stem cells</subject><subject>Transcription activation</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kcFu1DAQhi1ERcuWAy-ALHGBQ7p27Dj2BWm1pUulCg4FrpbXmWxdJXawE0pvPALP2CfBu9tWgIQv49F8-jSjH6GXlJzQ_ObWpBPKBaufoCPKuCpqQsTT3b8uFGHlIXqe0jUhTHDFn6FDVsq6EkodIbcM_dDBDxxDBwmHFo9XgI0dnb_7-WvtfOP8Bg8xjOA8XrmY-_nq_CvO3enHBW5MbzaQ0UxOFhpshjCMIbmdyxpvIWILXZeO0UFrugQv7usMfTl7_3n5obj4tDpfLi4KWzFWF5IRavna8lIRWRFLFROtokA4Y5lobEU5AUZKIfJEqErYlhDJWmOBt41kM_Ru7x2mdQ-NBT9G0-khut7EWx2M039PvLvSm_Bd14JLwusseHMviOHbBGnUvUvbE4yHMCVdcqZEyWrJMvr6H_Q6TNHn8zJVyZLK7Woz9HZP2RhSitA-LkOJ3gaoc4B6F2BmX_25_SP5kFgG5nvgxnVw-3-TXi4u98rfsaKl-Q</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Chen, Chen</creator><creator>Enomoto, Atsushi</creator><creator>Weng, Liang</creator><creator>Taki, Tetsuro</creator><creator>Shiraki, Yukihiro</creator><creator>Mii, Shinji</creator><creator>Ichihara, Ryosuke</creator><creator>Kanda, Mitsuro</creator><creator>Koike, Masahiko</creator><creator>Kodera, Yasuhiro</creator><creator>Takahashi, Masahide</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9206-6116</orcidid><orcidid>https://orcid.org/0000-0001-8654-6896</orcidid><orcidid>https://orcid.org/0000-0001-8266-3235</orcidid><orcidid>https://orcid.org/0000-0002-2803-2683</orcidid></search><sort><creationdate>202011</creationdate><title>Complex roles of the actin‐binding protein Girdin/GIV in DNA damage‐induced apoptosis of cancer cells</title><author>Chen, Chen ; Enomoto, Atsushi ; Weng, Liang ; Taki, Tetsuro ; Shiraki, Yukihiro ; Mii, Shinji ; Ichihara, Ryosuke ; Kanda, Mitsuro ; Koike, Masahiko ; Kodera, Yasuhiro ; Takahashi, Masahide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5337-8301c4bc4290850c1936f91e0433c53dc5140e302669366956cf0083face4fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actin</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Biomarkers</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>cancer cell heterogeneity</topic><topic>Cancer therapies</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Cycle</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>cell migration</topic><topic>CRISPR</topic><topic>Cytotoxicity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - radiation effects</topic><topic>Esophageal Neoplasms - genetics</topic><topic>Esophageal Neoplasms - pathology</topic><topic>Esophageal Neoplasms - radiotherapy</topic><topic>Esophagus</topic><topic>Female</topic><topic>Genomes</topic><topic>Girdin</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinases</topic><topic>Male</topic><topic>Microfilament Proteins - genetics</topic><topic>Microfilament Proteins - metabolism</topic><topic>Middle Aged</topic><topic>Mitosis</topic><topic>Models, Biological</topic><topic>Neoplasm Grading</topic><topic>Neoplasm Staging</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - mortality</topic><topic>Neoplasms - pathology</topic><topic>Original</topic><topic>p53 Protein</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Reagents</topic><topic>Stem cells</topic><topic>Transcription activation</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Enomoto, Atsushi</creatorcontrib><creatorcontrib>Weng, Liang</creatorcontrib><creatorcontrib>Taki, Tetsuro</creatorcontrib><creatorcontrib>Shiraki, Yukihiro</creatorcontrib><creatorcontrib>Mii, Shinji</creatorcontrib><creatorcontrib>Ichihara, Ryosuke</creatorcontrib><creatorcontrib>Kanda, Mitsuro</creatorcontrib><creatorcontrib>Koike, Masahiko</creatorcontrib><creatorcontrib>Kodera, Yasuhiro</creatorcontrib><creatorcontrib>Takahashi, Masahide</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chen</au><au>Enomoto, Atsushi</au><au>Weng, Liang</au><au>Taki, Tetsuro</au><au>Shiraki, Yukihiro</au><au>Mii, Shinji</au><au>Ichihara, Ryosuke</au><au>Kanda, Mitsuro</au><au>Koike, Masahiko</au><au>Kodera, Yasuhiro</au><au>Takahashi, Masahide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex roles of the actin‐binding protein Girdin/GIV in DNA damage‐induced apoptosis of cancer cells</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2020-11</date><risdate>2020</risdate><volume>111</volume><issue>11</issue><spage>4303</spage><epage>4317</epage><pages>4303-4317</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>The actin‐binding protein Girdin is a hub protein that interacts with multiple proteins to regulate motility and Akt and trimeric G protein signaling in cancer cells. Girdin expression correlates with poor outcomes in multiple human cancers. However, those findings are not universal, as they depend on study conditions. Those data suggest that multiple aspects of Girdin function and its role in tumor cell responses to anticancer therapeutics must be reconsidered. In the present study, we found that Girdin is involved in DNA damage‐induced cancer cell apoptosis. An esophageal cancer cell line that exhibited high Girdin expression showed a marked sensitivity to UV‐mediated DNA damage compared to a line with low Girdin expression. When transcriptional activation of endogenous Girdin was mediated by an engineered CRISPR/Cas9 activation system, sensitivity to DNA damage increased in both stationary and migrating HeLa cancer cells. High Girdin expression was associated with dysregulated cell cycle progression and prolonged G1 and M phases. These features were accompanied by p53 activation, which conceivably increases cancer cell vulnerability to UV exposure. These data highlight the importance of understanding complex Girdin functions that influence cancer cell sensitivity to therapeutics. The present study suggests that Girdin overexpression perturbs cell cycle distribution with prolonged G1 and M phases and aberrant p53 activation, which leads to an increase in sensitivity to DNA damage. It also showed that the upregulation of the spindle checkpoint protein Mad2 in Girdin‐overexpressing cells could be involved in dysregulated cell cycle progression.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32875699</pmid><doi>10.1111/cas.14637</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9206-6116</orcidid><orcidid>https://orcid.org/0000-0001-8654-6896</orcidid><orcidid>https://orcid.org/0000-0001-8266-3235</orcidid><orcidid>https://orcid.org/0000-0002-2803-2683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-9032
ispartof Cancer science, 2020-11, Vol.111 (11), p.4303-4317
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7648047
source Wiley Online Library Journals【Remote access available】; MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; PubMed Central
subjects Actin
Aged
Aged, 80 and over
AKT protein
Animals
Apoptosis
Apoptosis - genetics
Biomarkers
Brain cancer
Cancer
cancer cell heterogeneity
Cancer therapies
Cell adhesion & migration
Cell Cycle
Cell growth
Cell Line, Tumor
cell migration
CRISPR
Cytotoxicity
Deoxyribonucleic acid
DNA
DNA damage
DNA Damage - radiation effects
Esophageal Neoplasms - genetics
Esophageal Neoplasms - pathology
Esophageal Neoplasms - radiotherapy
Esophagus
Female
Genomes
Girdin
HeLa Cells
Humans
Kinases
Male
Microfilament Proteins - genetics
Microfilament Proteins - metabolism
Middle Aged
Mitosis
Models, Biological
Neoplasm Grading
Neoplasm Staging
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - mortality
Neoplasms - pathology
Original
p53 Protein
Prognosis
Proteins
Reagents
Stem cells
Transcription activation
Ultraviolet radiation
Ultraviolet Rays
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - metabolism
title Complex roles of the actin‐binding protein Girdin/GIV in DNA damage‐induced apoptosis of cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20roles%20of%20the%20actin%E2%80%90binding%20protein%20Girdin/GIV%20in%20DNA%20damage%E2%80%90induced%20apoptosis%20of%20cancer%20cells&rft.jtitle=Cancer%20science&rft.au=Chen,%20Chen&rft.date=2020-11&rft.volume=111&rft.issue=11&rft.spage=4303&rft.epage=4317&rft.pages=4303-4317&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.14637&rft_dat=%3Cproquest_pubme%3E2458218008%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458218008&rft_id=info:pmid/32875699&rfr_iscdi=true