miR‑124‑3p regulates angiogenesis in peripheral arterial disease by targeting STAT3

Peripheral arterial disease (PAD) is the third leading cause of cardiovascular morbidity worldwide, after coronary artery disease and stroke. As endogenous regulators of gene expression, microRNAs (miRs) are implicated in the development and progression of various diseases, including types of cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular medicine reports 2020-12, Vol.22 (6), p.4890-4898
Hauptverfasser: Shi, Yefei, Xu, Xu, Luan, Peipei, Kou, Wenxin, Li, Mingjie, Yu, Qing, Zhuang, Jianhui, Xu, Yawei, Peng, Wenhui, Jian, Weixia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4898
container_issue 6
container_start_page 4890
container_title Molecular medicine reports
container_volume 22
creator Shi, Yefei
Xu, Xu
Luan, Peipei
Kou, Wenxin
Li, Mingjie
Yu, Qing
Zhuang, Jianhui
Xu, Yawei
Peng, Wenhui
Jian, Weixia
description Peripheral arterial disease (PAD) is the third leading cause of cardiovascular morbidity worldwide, after coronary artery disease and stroke. As endogenous regulators of gene expression, microRNAs (miRs) are implicated in the development and progression of various diseases, including types of cancer, autoimmune diseases and heart diseases. In the present study, the role of miR‑124‑3p in PAD was investigated. The reverse transcription‑quantitative PCR results indicated that the expression levels of miR‑124‑3p were significantly increased in the ischemic tissue of the hindlimb ischemia (HLI) model and in hypoxic human umbilical vein endothelial cells compared with the corresponding control groups. Proliferation, wound healing and tube formation assays demonstrated the inhibition of miR‑124‑3p on angiogenesis in vitro and the HLI model indicated the same function of miR‑124‑3p in vivo. A dual‑luciferase reporter revealed STAT3 as the target of miR‑124‑3p. The expression levels of miR‑124‑3p in human blood were negatively correlated with ankle‑brachial index, which is an index for the evaluation of the severity of PAD. Collectively, the present study indicated that miR‑124‑3p was a critical regulator of angiogenesis in PAD, and a potential diagnostic, prognostic and therapeutic target for PAD.
doi_str_mv 10.3892/mmr.2020.11538
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7646933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A643060643</galeid><sourcerecordid>A643060643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-dc74106b3b8da178cac84cb8defa9f2af95276ef96311ad11da412d16dc63ff53</originalsourceid><addsrcrecordid>eNptUk1v1DAQtRCIlsKVI4rEhctuPbbjxBekVQUUqRISLOJoee1x6ipxgp0g9cZf4C_yS_C2S_lQZWk8Y7954xk_Qp4DXfNWsdNhSGtGGV0D1Lx9QI6hUbDilIqHB58p1RyRJzlfUSprVqvH5IhzaIQEeky-DOHjz-8_gIli-VQl7JbezJgrE7swdhgxh1yFWE2YwnSJyfSVSXMJiuNCRpOx2l1Xs0kdziF21aftZsufkkfe9BmfHfYT8vntm-3Z-eriw7v3Z5uLlRVtPa-cbQRQueO71hloWmtsK2wJ0BvlmfGqZo1EryQHMA7AGQHMgXRWcu9rfkJe3_JOy25AZzHO5YV6SmEw6VqPJuh_b2K41N34TTdSSMV5IXh1IEjj1wXzrIeQLfa9iTguWTNRK8la0exrvfwPejUuKZb2CkqW6fIa2j-ozvSoQ_RjqWv3pHojBaeSFltQ63tQZTkcgh0j-lDO70uwacw5ob_rEajeS0EXKei9FPSNFErCi78ncwf__ff8F-HBsGk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460063518</pqid></control><display><type>article</type><title>miR‑124‑3p regulates angiogenesis in peripheral arterial disease by targeting STAT3</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Shi, Yefei ; Xu, Xu ; Luan, Peipei ; Kou, Wenxin ; Li, Mingjie ; Yu, Qing ; Zhuang, Jianhui ; Xu, Yawei ; Peng, Wenhui ; Jian, Weixia</creator><creatorcontrib>Shi, Yefei ; Xu, Xu ; Luan, Peipei ; Kou, Wenxin ; Li, Mingjie ; Yu, Qing ; Zhuang, Jianhui ; Xu, Yawei ; Peng, Wenhui ; Jian, Weixia</creatorcontrib><description>Peripheral arterial disease (PAD) is the third leading cause of cardiovascular morbidity worldwide, after coronary artery disease and stroke. As endogenous regulators of gene expression, microRNAs (miRs) are implicated in the development and progression of various diseases, including types of cancer, autoimmune diseases and heart diseases. In the present study, the role of miR‑124‑3p in PAD was investigated. The reverse transcription‑quantitative PCR results indicated that the expression levels of miR‑124‑3p were significantly increased in the ischemic tissue of the hindlimb ischemia (HLI) model and in hypoxic human umbilical vein endothelial cells compared with the corresponding control groups. Proliferation, wound healing and tube formation assays demonstrated the inhibition of miR‑124‑3p on angiogenesis in vitro and the HLI model indicated the same function of miR‑124‑3p in vivo. A dual‑luciferase reporter revealed STAT3 as the target of miR‑124‑3p. The expression levels of miR‑124‑3p in human blood were negatively correlated with ankle‑brachial index, which is an index for the evaluation of the severity of PAD. Collectively, the present study indicated that miR‑124‑3p was a critical regulator of angiogenesis in PAD, and a potential diagnostic, prognostic and therapeutic target for PAD.</description><identifier>ISSN: 1791-2997</identifier><identifier>EISSN: 1791-3004</identifier><identifier>DOI: 10.3892/mmr.2020.11538</identifier><identifier>PMID: 33174610</identifier><language>eng</language><publisher>Greece: Spandidos Publications</publisher><subject>Aged ; Angiogenesis ; Angiogenesis Inducing Agents - metabolism ; Animals ; Ankle ; Autoimmune diseases ; Cell adhesion &amp; migration ; Cell growth ; Cell Hypoxia - genetics ; Cell proliferation ; China ; Coronary artery ; Coronary artery disease ; Development and progression ; Disease ; Endothelial cells ; Female ; Gene expression ; Genetic aspects ; Growth factors ; Health aspects ; Heart diseases ; Hindlimb - blood supply ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Hypoxia ; Ischemia ; Ischemia - genetics ; Laboratories ; Male ; Medical research ; Mice ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Middle Aged ; miRNA ; Morbidity ; Morphogenesis ; Neovascularization ; Neovascularization, Pathologic - genetics ; Neovascularization, Physiologic - genetics ; Peripheral Arterial Disease - genetics ; Peripheral Arterial Disease - metabolism ; Peripheral vascular diseases ; Physiological aspects ; Proteins ; Reverse transcription ; Signal Transduction - physiology ; STAT3 ; Stat3 protein ; STAT3 Transcription Factor - metabolism ; STAT3 Transcription Factor - physiology ; Umbilical vein ; Wound healing</subject><ispartof>Molecular medicine reports, 2020-12, Vol.22 (6), p.4890-4898</ispartof><rights>COPYRIGHT 2020 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2020</rights><rights>Copyright: © Shi et al. 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-dc74106b3b8da178cac84cb8defa9f2af95276ef96311ad11da412d16dc63ff53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33174610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yefei</creatorcontrib><creatorcontrib>Xu, Xu</creatorcontrib><creatorcontrib>Luan, Peipei</creatorcontrib><creatorcontrib>Kou, Wenxin</creatorcontrib><creatorcontrib>Li, Mingjie</creatorcontrib><creatorcontrib>Yu, Qing</creatorcontrib><creatorcontrib>Zhuang, Jianhui</creatorcontrib><creatorcontrib>Xu, Yawei</creatorcontrib><creatorcontrib>Peng, Wenhui</creatorcontrib><creatorcontrib>Jian, Weixia</creatorcontrib><title>miR‑124‑3p regulates angiogenesis in peripheral arterial disease by targeting STAT3</title><title>Molecular medicine reports</title><addtitle>Mol Med Rep</addtitle><description>Peripheral arterial disease (PAD) is the third leading cause of cardiovascular morbidity worldwide, after coronary artery disease and stroke. As endogenous regulators of gene expression, microRNAs (miRs) are implicated in the development and progression of various diseases, including types of cancer, autoimmune diseases and heart diseases. In the present study, the role of miR‑124‑3p in PAD was investigated. The reverse transcription‑quantitative PCR results indicated that the expression levels of miR‑124‑3p were significantly increased in the ischemic tissue of the hindlimb ischemia (HLI) model and in hypoxic human umbilical vein endothelial cells compared with the corresponding control groups. Proliferation, wound healing and tube formation assays demonstrated the inhibition of miR‑124‑3p on angiogenesis in vitro and the HLI model indicated the same function of miR‑124‑3p in vivo. A dual‑luciferase reporter revealed STAT3 as the target of miR‑124‑3p. The expression levels of miR‑124‑3p in human blood were negatively correlated with ankle‑brachial index, which is an index for the evaluation of the severity of PAD. Collectively, the present study indicated that miR‑124‑3p was a critical regulator of angiogenesis in PAD, and a potential diagnostic, prognostic and therapeutic target for PAD.</description><subject>Aged</subject><subject>Angiogenesis</subject><subject>Angiogenesis Inducing Agents - metabolism</subject><subject>Animals</subject><subject>Ankle</subject><subject>Autoimmune diseases</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell growth</subject><subject>Cell Hypoxia - genetics</subject><subject>Cell proliferation</subject><subject>China</subject><subject>Coronary artery</subject><subject>Coronary artery disease</subject><subject>Development and progression</subject><subject>Disease</subject><subject>Endothelial cells</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Growth factors</subject><subject>Health aspects</subject><subject>Heart diseases</subject><subject>Hindlimb - blood supply</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Ischemia</subject><subject>Ischemia - genetics</subject><subject>Laboratories</subject><subject>Male</subject><subject>Medical research</subject><subject>Mice</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Middle Aged</subject><subject>miRNA</subject><subject>Morbidity</subject><subject>Morphogenesis</subject><subject>Neovascularization</subject><subject>Neovascularization, Pathologic - genetics</subject><subject>Neovascularization, Physiologic - genetics</subject><subject>Peripheral Arterial Disease - genetics</subject><subject>Peripheral Arterial Disease - metabolism</subject><subject>Peripheral vascular diseases</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Reverse transcription</subject><subject>Signal Transduction - physiology</subject><subject>STAT3</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>STAT3 Transcription Factor - physiology</subject><subject>Umbilical vein</subject><subject>Wound healing</subject><issn>1791-2997</issn><issn>1791-3004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUk1v1DAQtRCIlsKVI4rEhctuPbbjxBekVQUUqRISLOJoee1x6ipxgp0g9cZf4C_yS_C2S_lQZWk8Y7954xk_Qp4DXfNWsdNhSGtGGV0D1Lx9QI6hUbDilIqHB58p1RyRJzlfUSprVqvH5IhzaIQEeky-DOHjz-8_gIli-VQl7JbezJgrE7swdhgxh1yFWE2YwnSJyfSVSXMJiuNCRpOx2l1Xs0kdziF21aftZsufkkfe9BmfHfYT8vntm-3Z-eriw7v3Z5uLlRVtPa-cbQRQueO71hloWmtsK2wJ0BvlmfGqZo1EryQHMA7AGQHMgXRWcu9rfkJe3_JOy25AZzHO5YV6SmEw6VqPJuh_b2K41N34TTdSSMV5IXh1IEjj1wXzrIeQLfa9iTguWTNRK8la0exrvfwPejUuKZb2CkqW6fIa2j-ozvSoQ_RjqWv3pHojBaeSFltQ63tQZTkcgh0j-lDO70uwacw5ob_rEajeS0EXKei9FPSNFErCi78ncwf__ff8F-HBsGk</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Shi, Yefei</creator><creator>Xu, Xu</creator><creator>Luan, Peipei</creator><creator>Kou, Wenxin</creator><creator>Li, Mingjie</creator><creator>Yu, Qing</creator><creator>Zhuang, Jianhui</creator><creator>Xu, Yawei</creator><creator>Peng, Wenhui</creator><creator>Jian, Weixia</creator><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><general>D.A. Spandidos</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201201</creationdate><title>miR‑124‑3p regulates angiogenesis in peripheral arterial disease by targeting STAT3</title><author>Shi, Yefei ; Xu, Xu ; Luan, Peipei ; Kou, Wenxin ; Li, Mingjie ; Yu, Qing ; Zhuang, Jianhui ; Xu, Yawei ; Peng, Wenhui ; Jian, Weixia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-dc74106b3b8da178cac84cb8defa9f2af95276ef96311ad11da412d16dc63ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Angiogenesis</topic><topic>Angiogenesis Inducing Agents - metabolism</topic><topic>Animals</topic><topic>Ankle</topic><topic>Autoimmune diseases</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell growth</topic><topic>Cell Hypoxia - genetics</topic><topic>Cell proliferation</topic><topic>China</topic><topic>Coronary artery</topic><topic>Coronary artery disease</topic><topic>Development and progression</topic><topic>Disease</topic><topic>Endothelial cells</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Growth factors</topic><topic>Health aspects</topic><topic>Heart diseases</topic><topic>Hindlimb - blood supply</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Ischemia</topic><topic>Ischemia - genetics</topic><topic>Laboratories</topic><topic>Male</topic><topic>Medical research</topic><topic>Mice</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Middle Aged</topic><topic>miRNA</topic><topic>Morbidity</topic><topic>Morphogenesis</topic><topic>Neovascularization</topic><topic>Neovascularization, Pathologic - genetics</topic><topic>Neovascularization, Physiologic - genetics</topic><topic>Peripheral Arterial Disease - genetics</topic><topic>Peripheral Arterial Disease - metabolism</topic><topic>Peripheral vascular diseases</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Reverse transcription</topic><topic>Signal Transduction - physiology</topic><topic>STAT3</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>STAT3 Transcription Factor - physiology</topic><topic>Umbilical vein</topic><topic>Wound healing</topic><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yefei</creatorcontrib><creatorcontrib>Xu, Xu</creatorcontrib><creatorcontrib>Luan, Peipei</creatorcontrib><creatorcontrib>Kou, Wenxin</creatorcontrib><creatorcontrib>Li, Mingjie</creatorcontrib><creatorcontrib>Yu, Qing</creatorcontrib><creatorcontrib>Zhuang, Jianhui</creatorcontrib><creatorcontrib>Xu, Yawei</creatorcontrib><creatorcontrib>Peng, Wenhui</creatorcontrib><creatorcontrib>Jian, Weixia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular medicine reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yefei</au><au>Xu, Xu</au><au>Luan, Peipei</au><au>Kou, Wenxin</au><au>Li, Mingjie</au><au>Yu, Qing</au><au>Zhuang, Jianhui</au><au>Xu, Yawei</au><au>Peng, Wenhui</au><au>Jian, Weixia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR‑124‑3p regulates angiogenesis in peripheral arterial disease by targeting STAT3</atitle><jtitle>Molecular medicine reports</jtitle><addtitle>Mol Med Rep</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>22</volume><issue>6</issue><spage>4890</spage><epage>4898</epage><pages>4890-4898</pages><issn>1791-2997</issn><eissn>1791-3004</eissn><abstract>Peripheral arterial disease (PAD) is the third leading cause of cardiovascular morbidity worldwide, after coronary artery disease and stroke. As endogenous regulators of gene expression, microRNAs (miRs) are implicated in the development and progression of various diseases, including types of cancer, autoimmune diseases and heart diseases. In the present study, the role of miR‑124‑3p in PAD was investigated. The reverse transcription‑quantitative PCR results indicated that the expression levels of miR‑124‑3p were significantly increased in the ischemic tissue of the hindlimb ischemia (HLI) model and in hypoxic human umbilical vein endothelial cells compared with the corresponding control groups. Proliferation, wound healing and tube formation assays demonstrated the inhibition of miR‑124‑3p on angiogenesis in vitro and the HLI model indicated the same function of miR‑124‑3p in vivo. A dual‑luciferase reporter revealed STAT3 as the target of miR‑124‑3p. The expression levels of miR‑124‑3p in human blood were negatively correlated with ankle‑brachial index, which is an index for the evaluation of the severity of PAD. Collectively, the present study indicated that miR‑124‑3p was a critical regulator of angiogenesis in PAD, and a potential diagnostic, prognostic and therapeutic target for PAD.</abstract><cop>Greece</cop><pub>Spandidos Publications</pub><pmid>33174610</pmid><doi>10.3892/mmr.2020.11538</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1791-2997
ispartof Molecular medicine reports, 2020-12, Vol.22 (6), p.4890-4898
issn 1791-2997
1791-3004
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7646933
source Spandidos Publications Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Aged
Angiogenesis
Angiogenesis Inducing Agents - metabolism
Animals
Ankle
Autoimmune diseases
Cell adhesion & migration
Cell growth
Cell Hypoxia - genetics
Cell proliferation
China
Coronary artery
Coronary artery disease
Development and progression
Disease
Endothelial cells
Female
Gene expression
Genetic aspects
Growth factors
Health aspects
Heart diseases
Hindlimb - blood supply
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Hypoxia
Ischemia
Ischemia - genetics
Laboratories
Male
Medical research
Mice
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
Middle Aged
miRNA
Morbidity
Morphogenesis
Neovascularization
Neovascularization, Pathologic - genetics
Neovascularization, Physiologic - genetics
Peripheral Arterial Disease - genetics
Peripheral Arterial Disease - metabolism
Peripheral vascular diseases
Physiological aspects
Proteins
Reverse transcription
Signal Transduction - physiology
STAT3
Stat3 protein
STAT3 Transcription Factor - metabolism
STAT3 Transcription Factor - physiology
Umbilical vein
Wound healing
title miR‑124‑3p regulates angiogenesis in peripheral arterial disease by targeting STAT3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR%E2%80%91124%E2%80%913p%20regulates%20angiogenesis%20in%20peripheral%20arterial%20disease%20by%20targeting%20STAT3&rft.jtitle=Molecular%20medicine%20reports&rft.au=Shi,%20Yefei&rft.date=2020-12-01&rft.volume=22&rft.issue=6&rft.spage=4890&rft.epage=4898&rft.pages=4890-4898&rft.issn=1791-2997&rft.eissn=1791-3004&rft_id=info:doi/10.3892/mmr.2020.11538&rft_dat=%3Cgale_pubme%3EA643060643%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460063518&rft_id=info:pmid/33174610&rft_galeid=A643060643&rfr_iscdi=true