Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections

Pathology differentiation of renal cancer types is challenging due to tissue similarities or overlapping histological features of various tumor (sub) types. As assessment is often manually conducted outcomes can be prone to human error and therefore require high-level expertise and experience. Mass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2020-11, Vol.11 (44), p.3998-4015
Hauptverfasser: Möginger, Uwe, Marcussen, Niels, Jensen, Ole N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4015
container_issue 44
container_start_page 3998
container_title Oncotarget
container_volume 11
creator Möginger, Uwe
Marcussen, Niels
Jensen, Ole N.
description Pathology differentiation of renal cancer types is challenging due to tissue similarities or overlapping histological features of various tumor (sub) types. As assessment is often manually conducted outcomes can be prone to human error and therefore require high-level expertise and experience. Mass spectrometry can provide detailed histo-molecular information on tissue and is becoming increasingly popular in clinical settings. Spatially resolving technologies such as mass spectrometry imaging and quantitative microproteomics profiling in combination with machine learning approaches provide promising tools for automated tumor classification of clinical tissue sections. In this proof of concept study we used MALDI-MS imaging (MSI) and rapid LC-MS/MS-based microproteomics technologies (15 min/sample) to analyze formalin-fixed paraffin embedded (FFPE) tissue sections and classify renal oncocytoma (RO, n = 11), clear cell renal cell carcinoma (ccRCC, n = 12) and chromophobe renal cell carcinoma (ChRCC, n = 5). Both methods were able to distinguish ccRCC, RO and ChRCC in cross-validation experiments. MSI correctly classified 87% of the patients whereas the rapid LC-MS/MS-based microproteomics approach correctly classified 100% of the patients. This strategy involving MSI and rapid proteome profiling by LC-MS/MS reveals molecular features of tumor sections and enables cancer subtype classification. Mass spectrometry provides a promising complementary approach to current pathological technologies for precise digitized diagnosis of diseases.
doi_str_mv 10.18632/oncotarget.27787
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7646834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463100229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2917-dd7ec1cab666bf426cfb3b6fb56eaa5ced87e037c5ba5945bcec54cb1995f9843</originalsourceid><addsrcrecordid>eNpVUc1u1jAQtBCIVqUPwM1HLinxb5ILEqqAIlXqBc7W2l5_GCVxsB3E9048JP7aisJevOMZzdo7hLxm_RUbteBv0-pShXzAesWHYRyekXM2yanjSonn__Rn5LKU730rJYeRTy_JmRCc6ZHLc_L7JpaauiXN6PYZMvUxBMy41gg1ppWmQBuCmTpYHWZadluPGxZqj3SBUmjZ0NWcFqz5SOMCh7geKKyeZtiip1tOFRt7akKcT2SzDCkv0EAX4i9sIsgQQoO4WPS-3dR9SZnWWMqOtLQJ7S3lFXkRYC54-XhekK8fP3y5vulu7z59vn5_2zk-saHzfkDHHFittQ2SaxessDpYpRFAOfTjgL0YnLKgJqmsQ6eks2yaVJhGKS7IuwffbbcLete2kWE2W27fy0eTIJr_mTV-M4f00wxa6lGcDN48GuT0Y8dSzRKLw3mGFdNeDJdasL7nfGpS9iB1OZWSMfwdw3pzH7R5CtrcBy3-ANMCpZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463100229</pqid></control><display><type>article</type><title>Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free E- Journals</source><creator>Möginger, Uwe ; Marcussen, Niels ; Jensen, Ole N.</creator><creatorcontrib>Möginger, Uwe ; Marcussen, Niels ; Jensen, Ole N.</creatorcontrib><description>Pathology differentiation of renal cancer types is challenging due to tissue similarities or overlapping histological features of various tumor (sub) types. As assessment is often manually conducted outcomes can be prone to human error and therefore require high-level expertise and experience. Mass spectrometry can provide detailed histo-molecular information on tissue and is becoming increasingly popular in clinical settings. Spatially resolving technologies such as mass spectrometry imaging and quantitative microproteomics profiling in combination with machine learning approaches provide promising tools for automated tumor classification of clinical tissue sections. In this proof of concept study we used MALDI-MS imaging (MSI) and rapid LC-MS/MS-based microproteomics technologies (15 min/sample) to analyze formalin-fixed paraffin embedded (FFPE) tissue sections and classify renal oncocytoma (RO, n = 11), clear cell renal cell carcinoma (ccRCC, n = 12) and chromophobe renal cell carcinoma (ChRCC, n = 5). Both methods were able to distinguish ccRCC, RO and ChRCC in cross-validation experiments. MSI correctly classified 87% of the patients whereas the rapid LC-MS/MS-based microproteomics approach correctly classified 100% of the patients. This strategy involving MSI and rapid proteome profiling by LC-MS/MS reveals molecular features of tumor sections and enables cancer subtype classification. Mass spectrometry provides a promising complementary approach to current pathological technologies for precise digitized diagnosis of diseases.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.27787</identifier><identifier>PMID: 33216824</identifier><language>eng</language><publisher>Impact Journals LLC</publisher><subject>Research Paper</subject><ispartof>Oncotarget, 2020-11, Vol.11 (44), p.3998-4015</ispartof><rights>Copyright: © 2020 Möginger et al.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2917-dd7ec1cab666bf426cfb3b6fb56eaa5ced87e037c5ba5945bcec54cb1995f9843</citedby><cites>FETCH-LOGICAL-c2917-dd7ec1cab666bf426cfb3b6fb56eaa5ced87e037c5ba5945bcec54cb1995f9843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646834/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646834/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Möginger, Uwe</creatorcontrib><creatorcontrib>Marcussen, Niels</creatorcontrib><creatorcontrib>Jensen, Ole N.</creatorcontrib><title>Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections</title><title>Oncotarget</title><description>Pathology differentiation of renal cancer types is challenging due to tissue similarities or overlapping histological features of various tumor (sub) types. As assessment is often manually conducted outcomes can be prone to human error and therefore require high-level expertise and experience. Mass spectrometry can provide detailed histo-molecular information on tissue and is becoming increasingly popular in clinical settings. Spatially resolving technologies such as mass spectrometry imaging and quantitative microproteomics profiling in combination with machine learning approaches provide promising tools for automated tumor classification of clinical tissue sections. In this proof of concept study we used MALDI-MS imaging (MSI) and rapid LC-MS/MS-based microproteomics technologies (15 min/sample) to analyze formalin-fixed paraffin embedded (FFPE) tissue sections and classify renal oncocytoma (RO, n = 11), clear cell renal cell carcinoma (ccRCC, n = 12) and chromophobe renal cell carcinoma (ChRCC, n = 5). Both methods were able to distinguish ccRCC, RO and ChRCC in cross-validation experiments. MSI correctly classified 87% of the patients whereas the rapid LC-MS/MS-based microproteomics approach correctly classified 100% of the patients. This strategy involving MSI and rapid proteome profiling by LC-MS/MS reveals molecular features of tumor sections and enables cancer subtype classification. Mass spectrometry provides a promising complementary approach to current pathological technologies for precise digitized diagnosis of diseases.</description><subject>Research Paper</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUc1u1jAQtBCIVqUPwM1HLinxb5ILEqqAIlXqBc7W2l5_GCVxsB3E9048JP7aisJevOMZzdo7hLxm_RUbteBv0-pShXzAesWHYRyekXM2yanjSonn__Rn5LKU730rJYeRTy_JmRCc6ZHLc_L7JpaauiXN6PYZMvUxBMy41gg1ppWmQBuCmTpYHWZadluPGxZqj3SBUmjZ0NWcFqz5SOMCh7geKKyeZtiip1tOFRt7akKcT2SzDCkv0EAX4i9sIsgQQoO4WPS-3dR9SZnWWMqOtLQJ7S3lFXkRYC54-XhekK8fP3y5vulu7z59vn5_2zk-saHzfkDHHFittQ2SaxessDpYpRFAOfTjgL0YnLKgJqmsQ6eks2yaVJhGKS7IuwffbbcLete2kWE2W27fy0eTIJr_mTV-M4f00wxa6lGcDN48GuT0Y8dSzRKLw3mGFdNeDJdasL7nfGpS9iB1OZWSMfwdw3pzH7R5CtrcBy3-ANMCpZA</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Möginger, Uwe</creator><creator>Marcussen, Niels</creator><creator>Jensen, Ole N.</creator><general>Impact Journals LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201103</creationdate><title>Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections</title><author>Möginger, Uwe ; Marcussen, Niels ; Jensen, Ole N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2917-dd7ec1cab666bf426cfb3b6fb56eaa5ced87e037c5ba5945bcec54cb1995f9843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Möginger, Uwe</creatorcontrib><creatorcontrib>Marcussen, Niels</creatorcontrib><creatorcontrib>Jensen, Ole N.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Möginger, Uwe</au><au>Marcussen, Niels</au><au>Jensen, Ole N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections</atitle><jtitle>Oncotarget</jtitle><date>2020-11-03</date><risdate>2020</risdate><volume>11</volume><issue>44</issue><spage>3998</spage><epage>4015</epage><pages>3998-4015</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>Pathology differentiation of renal cancer types is challenging due to tissue similarities or overlapping histological features of various tumor (sub) types. As assessment is often manually conducted outcomes can be prone to human error and therefore require high-level expertise and experience. Mass spectrometry can provide detailed histo-molecular information on tissue and is becoming increasingly popular in clinical settings. Spatially resolving technologies such as mass spectrometry imaging and quantitative microproteomics profiling in combination with machine learning approaches provide promising tools for automated tumor classification of clinical tissue sections. In this proof of concept study we used MALDI-MS imaging (MSI) and rapid LC-MS/MS-based microproteomics technologies (15 min/sample) to analyze formalin-fixed paraffin embedded (FFPE) tissue sections and classify renal oncocytoma (RO, n = 11), clear cell renal cell carcinoma (ccRCC, n = 12) and chromophobe renal cell carcinoma (ChRCC, n = 5). Both methods were able to distinguish ccRCC, RO and ChRCC in cross-validation experiments. MSI correctly classified 87% of the patients whereas the rapid LC-MS/MS-based microproteomics approach correctly classified 100% of the patients. This strategy involving MSI and rapid proteome profiling by LC-MS/MS reveals molecular features of tumor sections and enables cancer subtype classification. Mass spectrometry provides a promising complementary approach to current pathological technologies for precise digitized diagnosis of diseases.</abstract><pub>Impact Journals LLC</pub><pmid>33216824</pmid><doi>10.18632/oncotarget.27787</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-2553
ispartof Oncotarget, 2020-11, Vol.11 (44), p.3998-4015
issn 1949-2553
1949-2553
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7646834
source PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free E- Journals
subjects Research Paper
title Histo-molecular differentiation of renal cancer subtypes by mass spectrometry imaging and rapid proteome profiling of formalin-fixed paraffin-embedded tumor tissue sections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histo-molecular%20differentiation%20of%20renal%20cancer%20subtypes%20by%20mass%20spectrometry%20imaging%20and%20rapid%20proteome%20profiling%20of%20formalin-fixed%20paraffin-embedded%20tumor%20tissue%20sections&rft.jtitle=Oncotarget&rft.au=M%C3%B6ginger,%20Uwe&rft.date=2020-11-03&rft.volume=11&rft.issue=44&rft.spage=3998&rft.epage=4015&rft.pages=3998-4015&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.27787&rft_dat=%3Cproquest_pubme%3E2463100229%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463100229&rft_id=info:pmid/33216824&rfr_iscdi=true