Syncytia formation by SARS‐CoV‐2‐infected cells

Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2020-12, Vol.39 (23), p.e106267-n/a
Hauptverfasser: Buchrieser, Julian, Dufloo, Jérémy, Hubert, Mathieu, Monel, Blandine, Planas, Delphine, Rajah, Maaran Michael, Planchais, Cyril, Porrot, Françoise, Guivel‐Benhassine, Florence, Van der Werf, Sylvie, Casartelli, Nicoletta, Mouquet, Hugo, Bruel, Timothée, Schwartz, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e106267
container_title The EMBO journal
container_volume 39
creator Buchrieser, Julian
Dufloo, Jérémy
Hubert, Mathieu
Monel, Blandine
Planas, Delphine
Rajah, Maaran Michael
Planchais, Cyril
Porrot, Françoise
Guivel‐Benhassine, Florence
Van der Werf, Sylvie
Casartelli, Nicoletta
Mouquet, Hugo
Bruel, Timothée
Schwartz, Olivier
description Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike protein (S) at their surface and fuse with ACE2‐positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon‐induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S‐mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell‐free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS‐CoV‐2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation. Cells infected with SARS‐CoV‐2 fuse with neighboring cells to form syncytia. This process is accelerated by the TMPRSS2 protease and restricted by interferon‐induced transmembrane proteins (IFITMs). SARS‐CoV‐2‐infected cells can fuse with neighboring cells to form syncytia. IFITM proteins, particularly IFITM1, restrict syncytia formation. TMPRSS2 protease accelerates syncytia formation and reverts the inhibitory effects of the IFITMs. Graphical Abstract Cells infected with SARS‐CoV‐2 can fuse with neighbouring cells in a process accelerated by infectivity‐enhancing host factor TMPRSS2 and restricted by antiviral IFITM proteins.
doi_str_mv 10.15252/embj.2020106267
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7646020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465666613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6237-14d26e9b7a6d9eb9eb31992f278f6def97ab2e25ce7c4134951567cb22435b093</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EosPAnhUaiQ2bFPs6tscSQhpGhYIGITHA1nKcmzajJB7spCg7HoFn5EnwkNLSSgjLPwt_5_hcX0IeM3rMBAh4jm2xOwYKlFEJUt0hM5ZLmgFV4i6ZUZAsy9lSH5EHMe4opWKp2H1yxDkVbKnkjIjt2Lmxr-2i8qG1fe27RTEutquP25_ff6z9l7RDWnVXoeuxXDhsmviQ3KtsE_HR5Tknn1-ffFqfZpsPb96uV5vMSeAqY3kJEnWhrCw1FmlypjVUoJaVLLHSyhaAIBwqlzOea8GEVK4AyLkoqOZz8nLy3Q9Fi6XDrg-2MftQtzaMxtva3Lzp6nNz5i-MkukbgCaDbDI4vyU7XW3M3sYeh2AoB8EZ5xcs8c8uHwz-64CxN20dDyXbDv0QDeSCJRL0IdvTW-jOD6FL35EoKWQaiZwTOlEu-BgDVlcpGDW_e2gOPTTXPUySJ38XfSX407QEvJiAb3WD438Nzcn7V-9u-LNJHpOyO8NwHfyfmX4BL9m52w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465666613</pqid></control><display><type>article</type><title>Syncytia formation by SARS‐CoV‐2‐infected cells</title><source>Springer Nature OA Free Journals</source><creator>Buchrieser, Julian ; Dufloo, Jérémy ; Hubert, Mathieu ; Monel, Blandine ; Planas, Delphine ; Rajah, Maaran Michael ; Planchais, Cyril ; Porrot, Françoise ; Guivel‐Benhassine, Florence ; Van der Werf, Sylvie ; Casartelli, Nicoletta ; Mouquet, Hugo ; Bruel, Timothée ; Schwartz, Olivier</creator><creatorcontrib>Buchrieser, Julian ; Dufloo, Jérémy ; Hubert, Mathieu ; Monel, Blandine ; Planas, Delphine ; Rajah, Maaran Michael ; Planchais, Cyril ; Porrot, Françoise ; Guivel‐Benhassine, Florence ; Van der Werf, Sylvie ; Casartelli, Nicoletta ; Mouquet, Hugo ; Bruel, Timothée ; Schwartz, Olivier</creatorcontrib><description>Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike protein (S) at their surface and fuse with ACE2‐positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon‐induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S‐mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell‐free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS‐CoV‐2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation. Cells infected with SARS‐CoV‐2 fuse with neighboring cells to form syncytia. This process is accelerated by the TMPRSS2 protease and restricted by interferon‐induced transmembrane proteins (IFITMs). SARS‐CoV‐2‐infected cells can fuse with neighboring cells to form syncytia. IFITM proteins, particularly IFITM1, restrict syncytia formation. TMPRSS2 protease accelerates syncytia formation and reverts the inhibitory effects of the IFITMs. Graphical Abstract Cells infected with SARS‐CoV‐2 can fuse with neighbouring cells in a process accelerated by infectivity‐enhancing host factor TMPRSS2 and restricted by antiviral IFITM proteins.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2020106267</identifier><identifier>PMID: 33051876</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>ACE2 ; Angiotensin-Converting Enzyme 2 ; Angiotensin-Converting Enzyme 2 - genetics ; Angiotensin-Converting Enzyme 2 - metabolism ; Animals ; Antigens, Differentiation ; Antigens, Differentiation - genetics ; Antigens, Differentiation - metabolism ; Cell Fusion ; Cell Line ; Chlorocebus aethiops ; COVID-19 ; COVID-19 - metabolism ; COVID-19 - pathology ; COVID-19 - virology ; EMBO19 ; fusion ; Giant Cells ; Giant Cells - metabolism ; Giant Cells - virology ; HEK293 Cells ; Host-Pathogen Interactions ; Humans ; Infectivity ; Interferon ; Life Sciences ; Membrane Proteins ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Microbiology and Parasitology ; Pathological effects ; Pneumocytes ; Protease ; Proteins ; RNA-Binding Proteins ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; SARS-CoV-2 ; Serine ; Serine Endopeptidases ; Serine Endopeptidases - genetics ; Serine Endopeptidases - metabolism ; Serine proteinase ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Spike Glycoprotein, Coronavirus ; Spike Glycoprotein, Coronavirus - metabolism ; Spike protein ; Syncytia ; Vero Cells ; Vero Cells - virology ; Viral diseases ; Virions ; Virology</subject><ispartof>The EMBO journal, 2020-12, Vol.39 (23), p.e106267-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors</rights><rights>2020 The Authors.</rights><rights>2020 EMBO</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6237-14d26e9b7a6d9eb9eb31992f278f6def97ab2e25ce7c4134951567cb22435b093</citedby><cites>FETCH-LOGICAL-c6237-14d26e9b7a6d9eb9eb31992f278f6def97ab2e25ce7c4134951567cb22435b093</cites><orcidid>0000-0002-0729-1475 ; 0000-0002-3952-4261 ; 0000-0002-4963-1378 ; 0000-0002-4230-610X ; 0000-0003-4790-7577 ; 0000-0003-3155-9918 ; 0000-0002-5142-7253 ; 0000-0003-3410-5671 ; 0000-0002-1148-4456 ; 0000-0002-2509-9954 ; 0000-0002-6674-8850 ; 0000-0001-8995-3614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646020/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646020/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.2020106267$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33051876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-03253133$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Buchrieser, Julian</creatorcontrib><creatorcontrib>Dufloo, Jérémy</creatorcontrib><creatorcontrib>Hubert, Mathieu</creatorcontrib><creatorcontrib>Monel, Blandine</creatorcontrib><creatorcontrib>Planas, Delphine</creatorcontrib><creatorcontrib>Rajah, Maaran Michael</creatorcontrib><creatorcontrib>Planchais, Cyril</creatorcontrib><creatorcontrib>Porrot, Françoise</creatorcontrib><creatorcontrib>Guivel‐Benhassine, Florence</creatorcontrib><creatorcontrib>Van der Werf, Sylvie</creatorcontrib><creatorcontrib>Casartelli, Nicoletta</creatorcontrib><creatorcontrib>Mouquet, Hugo</creatorcontrib><creatorcontrib>Bruel, Timothée</creatorcontrib><creatorcontrib>Schwartz, Olivier</creatorcontrib><title>Syncytia formation by SARS‐CoV‐2‐infected cells</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike protein (S) at their surface and fuse with ACE2‐positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon‐induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S‐mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell‐free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS‐CoV‐2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation. Cells infected with SARS‐CoV‐2 fuse with neighboring cells to form syncytia. This process is accelerated by the TMPRSS2 protease and restricted by interferon‐induced transmembrane proteins (IFITMs). SARS‐CoV‐2‐infected cells can fuse with neighboring cells to form syncytia. IFITM proteins, particularly IFITM1, restrict syncytia formation. TMPRSS2 protease accelerates syncytia formation and reverts the inhibitory effects of the IFITMs. Graphical Abstract Cells infected with SARS‐CoV‐2 can fuse with neighbouring cells in a process accelerated by infectivity‐enhancing host factor TMPRSS2 and restricted by antiviral IFITM proteins.</description><subject>ACE2</subject><subject>Angiotensin-Converting Enzyme 2</subject><subject>Angiotensin-Converting Enzyme 2 - genetics</subject><subject>Angiotensin-Converting Enzyme 2 - metabolism</subject><subject>Animals</subject><subject>Antigens, Differentiation</subject><subject>Antigens, Differentiation - genetics</subject><subject>Antigens, Differentiation - metabolism</subject><subject>Cell Fusion</subject><subject>Cell Line</subject><subject>Chlorocebus aethiops</subject><subject>COVID-19</subject><subject>COVID-19 - metabolism</subject><subject>COVID-19 - pathology</subject><subject>COVID-19 - virology</subject><subject>EMBO19</subject><subject>fusion</subject><subject>Giant Cells</subject><subject>Giant Cells - metabolism</subject><subject>Giant Cells - virology</subject><subject>HEK293 Cells</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Infectivity</subject><subject>Interferon</subject><subject>Life Sciences</subject><subject>Membrane Proteins</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Microbiology and Parasitology</subject><subject>Pathological effects</subject><subject>Pneumocytes</subject><subject>Protease</subject><subject>Proteins</subject><subject>RNA-Binding Proteins</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>SARS-CoV-2</subject><subject>Serine</subject><subject>Serine Endopeptidases</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Serine proteinase</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Spike Glycoprotein, Coronavirus</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><subject>Spike protein</subject><subject>Syncytia</subject><subject>Vero Cells</subject><subject>Vero Cells - virology</subject><subject>Viral diseases</subject><subject>Virions</subject><subject>Virology</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EosPAnhUaiQ2bFPs6tscSQhpGhYIGITHA1nKcmzajJB7spCg7HoFn5EnwkNLSSgjLPwt_5_hcX0IeM3rMBAh4jm2xOwYKlFEJUt0hM5ZLmgFV4i6ZUZAsy9lSH5EHMe4opWKp2H1yxDkVbKnkjIjt2Lmxr-2i8qG1fe27RTEutquP25_ff6z9l7RDWnVXoeuxXDhsmviQ3KtsE_HR5Tknn1-ffFqfZpsPb96uV5vMSeAqY3kJEnWhrCw1FmlypjVUoJaVLLHSyhaAIBwqlzOea8GEVK4AyLkoqOZz8nLy3Q9Fi6XDrg-2MftQtzaMxtva3Lzp6nNz5i-MkukbgCaDbDI4vyU7XW3M3sYeh2AoB8EZ5xcs8c8uHwz-64CxN20dDyXbDv0QDeSCJRL0IdvTW-jOD6FL35EoKWQaiZwTOlEu-BgDVlcpGDW_e2gOPTTXPUySJ38XfSX407QEvJiAb3WD438Nzcn7V-9u-LNJHpOyO8NwHfyfmX4BL9m52w</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Buchrieser, Julian</creator><creator>Dufloo, Jérémy</creator><creator>Hubert, Mathieu</creator><creator>Monel, Blandine</creator><creator>Planas, Delphine</creator><creator>Rajah, Maaran Michael</creator><creator>Planchais, Cyril</creator><creator>Porrot, Françoise</creator><creator>Guivel‐Benhassine, Florence</creator><creator>Van der Werf, Sylvie</creator><creator>Casartelli, Nicoletta</creator><creator>Mouquet, Hugo</creator><creator>Bruel, Timothée</creator><creator>Schwartz, Olivier</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0729-1475</orcidid><orcidid>https://orcid.org/0000-0002-3952-4261</orcidid><orcidid>https://orcid.org/0000-0002-4963-1378</orcidid><orcidid>https://orcid.org/0000-0002-4230-610X</orcidid><orcidid>https://orcid.org/0000-0003-4790-7577</orcidid><orcidid>https://orcid.org/0000-0003-3155-9918</orcidid><orcidid>https://orcid.org/0000-0002-5142-7253</orcidid><orcidid>https://orcid.org/0000-0003-3410-5671</orcidid><orcidid>https://orcid.org/0000-0002-1148-4456</orcidid><orcidid>https://orcid.org/0000-0002-2509-9954</orcidid><orcidid>https://orcid.org/0000-0002-6674-8850</orcidid><orcidid>https://orcid.org/0000-0001-8995-3614</orcidid></search><sort><creationdate>20201201</creationdate><title>Syncytia formation by SARS‐CoV‐2‐infected cells</title><author>Buchrieser, Julian ; Dufloo, Jérémy ; Hubert, Mathieu ; Monel, Blandine ; Planas, Delphine ; Rajah, Maaran Michael ; Planchais, Cyril ; Porrot, Françoise ; Guivel‐Benhassine, Florence ; Van der Werf, Sylvie ; Casartelli, Nicoletta ; Mouquet, Hugo ; Bruel, Timothée ; Schwartz, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6237-14d26e9b7a6d9eb9eb31992f278f6def97ab2e25ce7c4134951567cb22435b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ACE2</topic><topic>Angiotensin-Converting Enzyme 2</topic><topic>Angiotensin-Converting Enzyme 2 - genetics</topic><topic>Angiotensin-Converting Enzyme 2 - metabolism</topic><topic>Animals</topic><topic>Antigens, Differentiation</topic><topic>Antigens, Differentiation - genetics</topic><topic>Antigens, Differentiation - metabolism</topic><topic>Cell Fusion</topic><topic>Cell Line</topic><topic>Chlorocebus aethiops</topic><topic>COVID-19</topic><topic>COVID-19 - metabolism</topic><topic>COVID-19 - pathology</topic><topic>COVID-19 - virology</topic><topic>EMBO19</topic><topic>fusion</topic><topic>Giant Cells</topic><topic>Giant Cells - metabolism</topic><topic>Giant Cells - virology</topic><topic>HEK293 Cells</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Infectivity</topic><topic>Interferon</topic><topic>Life Sciences</topic><topic>Membrane Proteins</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Microbiology and Parasitology</topic><topic>Pathological effects</topic><topic>Pneumocytes</topic><topic>Protease</topic><topic>Proteins</topic><topic>RNA-Binding Proteins</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>SARS-CoV-2</topic><topic>Serine</topic><topic>Serine Endopeptidases</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Serine proteinase</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Spike Glycoprotein, Coronavirus</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><topic>Spike protein</topic><topic>Syncytia</topic><topic>Vero Cells</topic><topic>Vero Cells - virology</topic><topic>Viral diseases</topic><topic>Virions</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchrieser, Julian</creatorcontrib><creatorcontrib>Dufloo, Jérémy</creatorcontrib><creatorcontrib>Hubert, Mathieu</creatorcontrib><creatorcontrib>Monel, Blandine</creatorcontrib><creatorcontrib>Planas, Delphine</creatorcontrib><creatorcontrib>Rajah, Maaran Michael</creatorcontrib><creatorcontrib>Planchais, Cyril</creatorcontrib><creatorcontrib>Porrot, Françoise</creatorcontrib><creatorcontrib>Guivel‐Benhassine, Florence</creatorcontrib><creatorcontrib>Van der Werf, Sylvie</creatorcontrib><creatorcontrib>Casartelli, Nicoletta</creatorcontrib><creatorcontrib>Mouquet, Hugo</creatorcontrib><creatorcontrib>Bruel, Timothée</creatorcontrib><creatorcontrib>Schwartz, Olivier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buchrieser, Julian</au><au>Dufloo, Jérémy</au><au>Hubert, Mathieu</au><au>Monel, Blandine</au><au>Planas, Delphine</au><au>Rajah, Maaran Michael</au><au>Planchais, Cyril</au><au>Porrot, Françoise</au><au>Guivel‐Benhassine, Florence</au><au>Van der Werf, Sylvie</au><au>Casartelli, Nicoletta</au><au>Mouquet, Hugo</au><au>Bruel, Timothée</au><au>Schwartz, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syncytia formation by SARS‐CoV‐2‐infected cells</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>23</issue><spage>e106267</spage><epage>n/a</epage><pages>e106267-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike protein (S) at their surface and fuse with ACE2‐positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon‐induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S‐mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell‐free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS‐CoV‐2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation. Cells infected with SARS‐CoV‐2 fuse with neighboring cells to form syncytia. This process is accelerated by the TMPRSS2 protease and restricted by interferon‐induced transmembrane proteins (IFITMs). SARS‐CoV‐2‐infected cells can fuse with neighboring cells to form syncytia. IFITM proteins, particularly IFITM1, restrict syncytia formation. TMPRSS2 protease accelerates syncytia formation and reverts the inhibitory effects of the IFITMs. Graphical Abstract Cells infected with SARS‐CoV‐2 can fuse with neighbouring cells in a process accelerated by infectivity‐enhancing host factor TMPRSS2 and restricted by antiviral IFITM proteins.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33051876</pmid><doi>10.15252/embj.2020106267</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0729-1475</orcidid><orcidid>https://orcid.org/0000-0002-3952-4261</orcidid><orcidid>https://orcid.org/0000-0002-4963-1378</orcidid><orcidid>https://orcid.org/0000-0002-4230-610X</orcidid><orcidid>https://orcid.org/0000-0003-4790-7577</orcidid><orcidid>https://orcid.org/0000-0003-3155-9918</orcidid><orcidid>https://orcid.org/0000-0002-5142-7253</orcidid><orcidid>https://orcid.org/0000-0003-3410-5671</orcidid><orcidid>https://orcid.org/0000-0002-1148-4456</orcidid><orcidid>https://orcid.org/0000-0002-2509-9954</orcidid><orcidid>https://orcid.org/0000-0002-6674-8850</orcidid><orcidid>https://orcid.org/0000-0001-8995-3614</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2020-12, Vol.39 (23), p.e106267-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7646020
source Springer Nature OA Free Journals
subjects ACE2
Angiotensin-Converting Enzyme 2
Angiotensin-Converting Enzyme 2 - genetics
Angiotensin-Converting Enzyme 2 - metabolism
Animals
Antigens, Differentiation
Antigens, Differentiation - genetics
Antigens, Differentiation - metabolism
Cell Fusion
Cell Line
Chlorocebus aethiops
COVID-19
COVID-19 - metabolism
COVID-19 - pathology
COVID-19 - virology
EMBO19
fusion
Giant Cells
Giant Cells - metabolism
Giant Cells - virology
HEK293 Cells
Host-Pathogen Interactions
Humans
Infectivity
Interferon
Life Sciences
Membrane Proteins
Membrane Proteins - genetics
Membrane Proteins - metabolism
Microbiology and Parasitology
Pathological effects
Pneumocytes
Protease
Proteins
RNA-Binding Proteins
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
SARS-CoV-2
Serine
Serine Endopeptidases
Serine Endopeptidases - genetics
Serine Endopeptidases - metabolism
Serine proteinase
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus
Spike Glycoprotein, Coronavirus - metabolism
Spike protein
Syncytia
Vero Cells
Vero Cells - virology
Viral diseases
Virions
Virology
title Syncytia formation by SARS‐CoV‐2‐infected cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syncytia%20formation%20by%20SARS%E2%80%90CoV%E2%80%902%E2%80%90infected%20cells&rft.jtitle=The%20EMBO%20journal&rft.au=Buchrieser,%20Julian&rft.date=2020-12-01&rft.volume=39&rft.issue=23&rft.spage=e106267&rft.epage=n/a&rft.pages=e106267-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2020106267&rft_dat=%3Cproquest_C6C%3E2465666613%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465666613&rft_id=info:pmid/33051876&rfr_iscdi=true