Syncytia formation by SARS‐CoV‐2‐infected cells
Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike p...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2020-12, Vol.39 (23), p.e106267-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e106267 |
container_title | The EMBO journal |
container_volume | 39 |
creator | Buchrieser, Julian Dufloo, Jérémy Hubert, Mathieu Monel, Blandine Planas, Delphine Rajah, Maaran Michael Planchais, Cyril Porrot, Françoise Guivel‐Benhassine, Florence Van der Werf, Sylvie Casartelli, Nicoletta Mouquet, Hugo Bruel, Timothée Schwartz, Olivier |
description | Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike protein (S) at their surface and fuse with ACE2‐positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon‐induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S‐mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell‐free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS‐CoV‐2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.
Cells infected with SARS‐CoV‐2 fuse with neighboring cells to form syncytia. This process is accelerated by the TMPRSS2 protease and restricted by interferon‐induced transmembrane proteins (IFITMs).
SARS‐CoV‐2‐infected cells can fuse with neighboring cells to form syncytia.
IFITM proteins, particularly IFITM1, restrict syncytia formation.
TMPRSS2 protease accelerates syncytia formation and reverts the inhibitory effects of the IFITMs.
Graphical Abstract
Cells infected with SARS‐CoV‐2 can fuse with neighbouring cells in a process accelerated by infectivity‐enhancing host factor TMPRSS2 and restricted by antiviral IFITM proteins. |
doi_str_mv | 10.15252/embj.2020106267 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7646020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465666613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6237-14d26e9b7a6d9eb9eb31992f278f6def97ab2e25ce7c4134951567cb22435b093</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EosPAnhUaiQ2bFPs6tscSQhpGhYIGITHA1nKcmzajJB7spCg7HoFn5EnwkNLSSgjLPwt_5_hcX0IeM3rMBAh4jm2xOwYKlFEJUt0hM5ZLmgFV4i6ZUZAsy9lSH5EHMe4opWKp2H1yxDkVbKnkjIjt2Lmxr-2i8qG1fe27RTEutquP25_ff6z9l7RDWnVXoeuxXDhsmviQ3KtsE_HR5Tknn1-ffFqfZpsPb96uV5vMSeAqY3kJEnWhrCw1FmlypjVUoJaVLLHSyhaAIBwqlzOea8GEVK4AyLkoqOZz8nLy3Q9Fi6XDrg-2MftQtzaMxtva3Lzp6nNz5i-MkukbgCaDbDI4vyU7XW3M3sYeh2AoB8EZ5xcs8c8uHwz-64CxN20dDyXbDv0QDeSCJRL0IdvTW-jOD6FL35EoKWQaiZwTOlEu-BgDVlcpGDW_e2gOPTTXPUySJ38XfSX407QEvJiAb3WD438Nzcn7V-9u-LNJHpOyO8NwHfyfmX4BL9m52w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465666613</pqid></control><display><type>article</type><title>Syncytia formation by SARS‐CoV‐2‐infected cells</title><source>Springer Nature OA Free Journals</source><creator>Buchrieser, Julian ; Dufloo, Jérémy ; Hubert, Mathieu ; Monel, Blandine ; Planas, Delphine ; Rajah, Maaran Michael ; Planchais, Cyril ; Porrot, Françoise ; Guivel‐Benhassine, Florence ; Van der Werf, Sylvie ; Casartelli, Nicoletta ; Mouquet, Hugo ; Bruel, Timothée ; Schwartz, Olivier</creator><creatorcontrib>Buchrieser, Julian ; Dufloo, Jérémy ; Hubert, Mathieu ; Monel, Blandine ; Planas, Delphine ; Rajah, Maaran Michael ; Planchais, Cyril ; Porrot, Françoise ; Guivel‐Benhassine, Florence ; Van der Werf, Sylvie ; Casartelli, Nicoletta ; Mouquet, Hugo ; Bruel, Timothée ; Schwartz, Olivier</creatorcontrib><description>Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike protein (S) at their surface and fuse with ACE2‐positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon‐induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S‐mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell‐free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS‐CoV‐2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.
Cells infected with SARS‐CoV‐2 fuse with neighboring cells to form syncytia. This process is accelerated by the TMPRSS2 protease and restricted by interferon‐induced transmembrane proteins (IFITMs).
SARS‐CoV‐2‐infected cells can fuse with neighboring cells to form syncytia.
IFITM proteins, particularly IFITM1, restrict syncytia formation.
TMPRSS2 protease accelerates syncytia formation and reverts the inhibitory effects of the IFITMs.
Graphical Abstract
Cells infected with SARS‐CoV‐2 can fuse with neighbouring cells in a process accelerated by infectivity‐enhancing host factor TMPRSS2 and restricted by antiviral IFITM proteins.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2020106267</identifier><identifier>PMID: 33051876</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>ACE2 ; Angiotensin-Converting Enzyme 2 ; Angiotensin-Converting Enzyme 2 - genetics ; Angiotensin-Converting Enzyme 2 - metabolism ; Animals ; Antigens, Differentiation ; Antigens, Differentiation - genetics ; Antigens, Differentiation - metabolism ; Cell Fusion ; Cell Line ; Chlorocebus aethiops ; COVID-19 ; COVID-19 - metabolism ; COVID-19 - pathology ; COVID-19 - virology ; EMBO19 ; fusion ; Giant Cells ; Giant Cells - metabolism ; Giant Cells - virology ; HEK293 Cells ; Host-Pathogen Interactions ; Humans ; Infectivity ; Interferon ; Life Sciences ; Membrane Proteins ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Microbiology and Parasitology ; Pathological effects ; Pneumocytes ; Protease ; Proteins ; RNA-Binding Proteins ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; SARS-CoV-2 ; Serine ; Serine Endopeptidases ; Serine Endopeptidases - genetics ; Serine Endopeptidases - metabolism ; Serine proteinase ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Spike Glycoprotein, Coronavirus ; Spike Glycoprotein, Coronavirus - metabolism ; Spike protein ; Syncytia ; Vero Cells ; Vero Cells - virology ; Viral diseases ; Virions ; Virology</subject><ispartof>The EMBO journal, 2020-12, Vol.39 (23), p.e106267-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors</rights><rights>2020 The Authors.</rights><rights>2020 EMBO</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6237-14d26e9b7a6d9eb9eb31992f278f6def97ab2e25ce7c4134951567cb22435b093</citedby><cites>FETCH-LOGICAL-c6237-14d26e9b7a6d9eb9eb31992f278f6def97ab2e25ce7c4134951567cb22435b093</cites><orcidid>0000-0002-0729-1475 ; 0000-0002-3952-4261 ; 0000-0002-4963-1378 ; 0000-0002-4230-610X ; 0000-0003-4790-7577 ; 0000-0003-3155-9918 ; 0000-0002-5142-7253 ; 0000-0003-3410-5671 ; 0000-0002-1148-4456 ; 0000-0002-2509-9954 ; 0000-0002-6674-8850 ; 0000-0001-8995-3614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646020/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646020/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.2020106267$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33051876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-03253133$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Buchrieser, Julian</creatorcontrib><creatorcontrib>Dufloo, Jérémy</creatorcontrib><creatorcontrib>Hubert, Mathieu</creatorcontrib><creatorcontrib>Monel, Blandine</creatorcontrib><creatorcontrib>Planas, Delphine</creatorcontrib><creatorcontrib>Rajah, Maaran Michael</creatorcontrib><creatorcontrib>Planchais, Cyril</creatorcontrib><creatorcontrib>Porrot, Françoise</creatorcontrib><creatorcontrib>Guivel‐Benhassine, Florence</creatorcontrib><creatorcontrib>Van der Werf, Sylvie</creatorcontrib><creatorcontrib>Casartelli, Nicoletta</creatorcontrib><creatorcontrib>Mouquet, Hugo</creatorcontrib><creatorcontrib>Bruel, Timothée</creatorcontrib><creatorcontrib>Schwartz, Olivier</creatorcontrib><title>Syncytia formation by SARS‐CoV‐2‐infected cells</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike protein (S) at their surface and fuse with ACE2‐positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon‐induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S‐mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell‐free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS‐CoV‐2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.
Cells infected with SARS‐CoV‐2 fuse with neighboring cells to form syncytia. This process is accelerated by the TMPRSS2 protease and restricted by interferon‐induced transmembrane proteins (IFITMs).
SARS‐CoV‐2‐infected cells can fuse with neighboring cells to form syncytia.
IFITM proteins, particularly IFITM1, restrict syncytia formation.
TMPRSS2 protease accelerates syncytia formation and reverts the inhibitory effects of the IFITMs.
Graphical Abstract
Cells infected with SARS‐CoV‐2 can fuse with neighbouring cells in a process accelerated by infectivity‐enhancing host factor TMPRSS2 and restricted by antiviral IFITM proteins.</description><subject>ACE2</subject><subject>Angiotensin-Converting Enzyme 2</subject><subject>Angiotensin-Converting Enzyme 2 - genetics</subject><subject>Angiotensin-Converting Enzyme 2 - metabolism</subject><subject>Animals</subject><subject>Antigens, Differentiation</subject><subject>Antigens, Differentiation - genetics</subject><subject>Antigens, Differentiation - metabolism</subject><subject>Cell Fusion</subject><subject>Cell Line</subject><subject>Chlorocebus aethiops</subject><subject>COVID-19</subject><subject>COVID-19 - metabolism</subject><subject>COVID-19 - pathology</subject><subject>COVID-19 - virology</subject><subject>EMBO19</subject><subject>fusion</subject><subject>Giant Cells</subject><subject>Giant Cells - metabolism</subject><subject>Giant Cells - virology</subject><subject>HEK293 Cells</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Infectivity</subject><subject>Interferon</subject><subject>Life Sciences</subject><subject>Membrane Proteins</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Microbiology and Parasitology</subject><subject>Pathological effects</subject><subject>Pneumocytes</subject><subject>Protease</subject><subject>Proteins</subject><subject>RNA-Binding Proteins</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>SARS-CoV-2</subject><subject>Serine</subject><subject>Serine Endopeptidases</subject><subject>Serine Endopeptidases - genetics</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Serine proteinase</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Spike Glycoprotein, Coronavirus</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><subject>Spike protein</subject><subject>Syncytia</subject><subject>Vero Cells</subject><subject>Vero Cells - virology</subject><subject>Viral diseases</subject><subject>Virions</subject><subject>Virology</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EosPAnhUaiQ2bFPs6tscSQhpGhYIGITHA1nKcmzajJB7spCg7HoFn5EnwkNLSSgjLPwt_5_hcX0IeM3rMBAh4jm2xOwYKlFEJUt0hM5ZLmgFV4i6ZUZAsy9lSH5EHMe4opWKp2H1yxDkVbKnkjIjt2Lmxr-2i8qG1fe27RTEutquP25_ff6z9l7RDWnVXoeuxXDhsmviQ3KtsE_HR5Tknn1-ffFqfZpsPb96uV5vMSeAqY3kJEnWhrCw1FmlypjVUoJaVLLHSyhaAIBwqlzOea8GEVK4AyLkoqOZz8nLy3Q9Fi6XDrg-2MftQtzaMxtva3Lzp6nNz5i-MkukbgCaDbDI4vyU7XW3M3sYeh2AoB8EZ5xcs8c8uHwz-64CxN20dDyXbDv0QDeSCJRL0IdvTW-jOD6FL35EoKWQaiZwTOlEu-BgDVlcpGDW_e2gOPTTXPUySJ38XfSX407QEvJiAb3WD438Nzcn7V-9u-LNJHpOyO8NwHfyfmX4BL9m52w</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Buchrieser, Julian</creator><creator>Dufloo, Jérémy</creator><creator>Hubert, Mathieu</creator><creator>Monel, Blandine</creator><creator>Planas, Delphine</creator><creator>Rajah, Maaran Michael</creator><creator>Planchais, Cyril</creator><creator>Porrot, Françoise</creator><creator>Guivel‐Benhassine, Florence</creator><creator>Van der Werf, Sylvie</creator><creator>Casartelli, Nicoletta</creator><creator>Mouquet, Hugo</creator><creator>Bruel, Timothée</creator><creator>Schwartz, Olivier</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0729-1475</orcidid><orcidid>https://orcid.org/0000-0002-3952-4261</orcidid><orcidid>https://orcid.org/0000-0002-4963-1378</orcidid><orcidid>https://orcid.org/0000-0002-4230-610X</orcidid><orcidid>https://orcid.org/0000-0003-4790-7577</orcidid><orcidid>https://orcid.org/0000-0003-3155-9918</orcidid><orcidid>https://orcid.org/0000-0002-5142-7253</orcidid><orcidid>https://orcid.org/0000-0003-3410-5671</orcidid><orcidid>https://orcid.org/0000-0002-1148-4456</orcidid><orcidid>https://orcid.org/0000-0002-2509-9954</orcidid><orcidid>https://orcid.org/0000-0002-6674-8850</orcidid><orcidid>https://orcid.org/0000-0001-8995-3614</orcidid></search><sort><creationdate>20201201</creationdate><title>Syncytia formation by SARS‐CoV‐2‐infected cells</title><author>Buchrieser, Julian ; Dufloo, Jérémy ; Hubert, Mathieu ; Monel, Blandine ; Planas, Delphine ; Rajah, Maaran Michael ; Planchais, Cyril ; Porrot, Françoise ; Guivel‐Benhassine, Florence ; Van der Werf, Sylvie ; Casartelli, Nicoletta ; Mouquet, Hugo ; Bruel, Timothée ; Schwartz, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6237-14d26e9b7a6d9eb9eb31992f278f6def97ab2e25ce7c4134951567cb22435b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ACE2</topic><topic>Angiotensin-Converting Enzyme 2</topic><topic>Angiotensin-Converting Enzyme 2 - genetics</topic><topic>Angiotensin-Converting Enzyme 2 - metabolism</topic><topic>Animals</topic><topic>Antigens, Differentiation</topic><topic>Antigens, Differentiation - genetics</topic><topic>Antigens, Differentiation - metabolism</topic><topic>Cell Fusion</topic><topic>Cell Line</topic><topic>Chlorocebus aethiops</topic><topic>COVID-19</topic><topic>COVID-19 - metabolism</topic><topic>COVID-19 - pathology</topic><topic>COVID-19 - virology</topic><topic>EMBO19</topic><topic>fusion</topic><topic>Giant Cells</topic><topic>Giant Cells - metabolism</topic><topic>Giant Cells - virology</topic><topic>HEK293 Cells</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Infectivity</topic><topic>Interferon</topic><topic>Life Sciences</topic><topic>Membrane Proteins</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Microbiology and Parasitology</topic><topic>Pathological effects</topic><topic>Pneumocytes</topic><topic>Protease</topic><topic>Proteins</topic><topic>RNA-Binding Proteins</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>SARS-CoV-2</topic><topic>Serine</topic><topic>Serine Endopeptidases</topic><topic>Serine Endopeptidases - genetics</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Serine proteinase</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Spike Glycoprotein, Coronavirus</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><topic>Spike protein</topic><topic>Syncytia</topic><topic>Vero Cells</topic><topic>Vero Cells - virology</topic><topic>Viral diseases</topic><topic>Virions</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchrieser, Julian</creatorcontrib><creatorcontrib>Dufloo, Jérémy</creatorcontrib><creatorcontrib>Hubert, Mathieu</creatorcontrib><creatorcontrib>Monel, Blandine</creatorcontrib><creatorcontrib>Planas, Delphine</creatorcontrib><creatorcontrib>Rajah, Maaran Michael</creatorcontrib><creatorcontrib>Planchais, Cyril</creatorcontrib><creatorcontrib>Porrot, Françoise</creatorcontrib><creatorcontrib>Guivel‐Benhassine, Florence</creatorcontrib><creatorcontrib>Van der Werf, Sylvie</creatorcontrib><creatorcontrib>Casartelli, Nicoletta</creatorcontrib><creatorcontrib>Mouquet, Hugo</creatorcontrib><creatorcontrib>Bruel, Timothée</creatorcontrib><creatorcontrib>Schwartz, Olivier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buchrieser, Julian</au><au>Dufloo, Jérémy</au><au>Hubert, Mathieu</au><au>Monel, Blandine</au><au>Planas, Delphine</au><au>Rajah, Maaran Michael</au><au>Planchais, Cyril</au><au>Porrot, Françoise</au><au>Guivel‐Benhassine, Florence</au><au>Van der Werf, Sylvie</au><au>Casartelli, Nicoletta</au><au>Mouquet, Hugo</au><au>Bruel, Timothée</au><au>Schwartz, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syncytia formation by SARS‐CoV‐2‐infected cells</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>23</issue><spage>e106267</spage><epage>n/a</epage><pages>e106267-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike protein (S) at their surface and fuse with ACE2‐positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon‐induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S‐mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell‐free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS‐CoV‐2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.
Cells infected with SARS‐CoV‐2 fuse with neighboring cells to form syncytia. This process is accelerated by the TMPRSS2 protease and restricted by interferon‐induced transmembrane proteins (IFITMs).
SARS‐CoV‐2‐infected cells can fuse with neighboring cells to form syncytia.
IFITM proteins, particularly IFITM1, restrict syncytia formation.
TMPRSS2 protease accelerates syncytia formation and reverts the inhibitory effects of the IFITMs.
Graphical Abstract
Cells infected with SARS‐CoV‐2 can fuse with neighbouring cells in a process accelerated by infectivity‐enhancing host factor TMPRSS2 and restricted by antiviral IFITM proteins.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33051876</pmid><doi>10.15252/embj.2020106267</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0729-1475</orcidid><orcidid>https://orcid.org/0000-0002-3952-4261</orcidid><orcidid>https://orcid.org/0000-0002-4963-1378</orcidid><orcidid>https://orcid.org/0000-0002-4230-610X</orcidid><orcidid>https://orcid.org/0000-0003-4790-7577</orcidid><orcidid>https://orcid.org/0000-0003-3155-9918</orcidid><orcidid>https://orcid.org/0000-0002-5142-7253</orcidid><orcidid>https://orcid.org/0000-0003-3410-5671</orcidid><orcidid>https://orcid.org/0000-0002-1148-4456</orcidid><orcidid>https://orcid.org/0000-0002-2509-9954</orcidid><orcidid>https://orcid.org/0000-0002-6674-8850</orcidid><orcidid>https://orcid.org/0000-0001-8995-3614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2020-12, Vol.39 (23), p.e106267-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7646020 |
source | Springer Nature OA Free Journals |
subjects | ACE2 Angiotensin-Converting Enzyme 2 Angiotensin-Converting Enzyme 2 - genetics Angiotensin-Converting Enzyme 2 - metabolism Animals Antigens, Differentiation Antigens, Differentiation - genetics Antigens, Differentiation - metabolism Cell Fusion Cell Line Chlorocebus aethiops COVID-19 COVID-19 - metabolism COVID-19 - pathology COVID-19 - virology EMBO19 fusion Giant Cells Giant Cells - metabolism Giant Cells - virology HEK293 Cells Host-Pathogen Interactions Humans Infectivity Interferon Life Sciences Membrane Proteins Membrane Proteins - genetics Membrane Proteins - metabolism Microbiology and Parasitology Pathological effects Pneumocytes Protease Proteins RNA-Binding Proteins RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism SARS-CoV-2 Serine Serine Endopeptidases Serine Endopeptidases - genetics Serine Endopeptidases - metabolism Serine proteinase Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus Spike Glycoprotein, Coronavirus - metabolism Spike protein Syncytia Vero Cells Vero Cells - virology Viral diseases Virions Virology |
title | Syncytia formation by SARS‐CoV‐2‐infected cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syncytia%20formation%20by%20SARS%E2%80%90CoV%E2%80%902%E2%80%90infected%20cells&rft.jtitle=The%20EMBO%20journal&rft.au=Buchrieser,%20Julian&rft.date=2020-12-01&rft.volume=39&rft.issue=23&rft.spage=e106267&rft.epage=n/a&rft.pages=e106267-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2020106267&rft_dat=%3Cproquest_C6C%3E2465666613%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465666613&rft_id=info:pmid/33051876&rfr_iscdi=true |