Application of the decision tree method to lithology identification of volcanic rocks-taking the Mesozoic in the Laizhouwan Sag as an example

The decision tree method can be used to identify complex volcanic rock lithology by dividing lithology sample data layer by layer and establishing a tree structure classification model. Mesozoic volcanic strata are widely developed in the Bohai Bay Basin, the rock types are complex and diverse, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-11, Vol.10 (1), p.19209-19209, Article 19209
Hauptverfasser: Duan, Yajun, Xie, Jun, Su, Yanchun, Liang, Huizhen, Hu, Xiao, Wang, Qizhen, Pan, Zhiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19209
container_issue 1
container_start_page 19209
container_title Scientific reports
container_volume 10
creator Duan, Yajun
Xie, Jun
Su, Yanchun
Liang, Huizhen
Hu, Xiao
Wang, Qizhen
Pan, Zhiping
description The decision tree method can be used to identify complex volcanic rock lithology by dividing lithology sample data layer by layer and establishing a tree structure classification model. Mesozoic volcanic strata are widely developed in the Bohai Bay Basin, the rock types are complex and diverse, and the logging response is irregular. Taking the D oilfield of the Laizhouwan Sag in the Bohai Bay Basin as an example, this study selects volcanic rocks with good development scales and single-layer thicknesses of more than 0.2 m as samples. Based on a comparison of various lithology identification methods and both coring and logging data, using the decision tree analysis method and the probability density characteristics of logging parameters, six logging parameters with good sensitivity to the response of the volcanic rocks of the above formation are selected (resistivity (RD), spontaneous potential (SP), density (ZDEN), natural gamma ray (GR), acoustic (DT), and compensated neutron correction (CNCF) curves), which are combined to form a lithology classifier with a tree structure similar to a flow chart. This method can clearly express the process and result of identifying volcanic rock lithology with each logging curve. Additionally, crossplots and imaging logging are used to identify the volcanic rock structure, and the core data are used to correct the identified lithology. A combination of conventional logging, imaging logging and the decision tree method is proposed to identify volcanic rock lithology, which substantially improves the accuracy of rock identification.
doi_str_mv 10.1038/s41598-020-76303-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471544908</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-bd226f4a00d8b6dbefdd7fecbe8d9df81a1a80999929491a385f76d351b1c97c3</originalsourceid><addsrcrecordid>eNp9Uctu1TAUtBCIVqU_wMoSGzYBv5I4G6Sq4iVd1AWwthz7ONdtYgc7abn9B_4Z994KWhacjefozIw8GoReUvKGEi7fZkHrTlaEkaptOOHV7gk6ZkTUFeOMPX2Aj9BpzpekTM06Qbvn6IhzWotayGP062yeR2_04mPA0eFlC9iC8fluXxIAnmDZRouXiEdf0BiHHfYWwuLdA911HI0O3uAUzVWuFn3lw7B3-wI53sZy8WG_b7S_3cb1Rgf8VQ9YZ1wQ_NTTPMIL9MzpMcPp_XuCvn94_-38U7W5-Pj5_GxTadGKpeotY40TmhAr-8b24KxtHZgepO2sk1RTLUlXpgTuqOaydm1jeU17arrW8BP07uA7r_0E1pQ0SY9qTn7Saaei9urxJfitGuK1ahtRt01XDF7fG6T4Y4W8qMlnA-OoA8Q1KyZqWVpie-qrf6iXcU2hxCustvQgOiILix1YJsWcE7g_n6FE3RWuDoWrUrjaF652RcQPolzIYYD01_o_qt8n8LC8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471544908</pqid></control><display><type>article</type><title>Application of the decision tree method to lithology identification of volcanic rocks-taking the Mesozoic in the Laizhouwan Sag as an example</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Duan, Yajun ; Xie, Jun ; Su, Yanchun ; Liang, Huizhen ; Hu, Xiao ; Wang, Qizhen ; Pan, Zhiping</creator><creatorcontrib>Duan, Yajun ; Xie, Jun ; Su, Yanchun ; Liang, Huizhen ; Hu, Xiao ; Wang, Qizhen ; Pan, Zhiping</creatorcontrib><description>The decision tree method can be used to identify complex volcanic rock lithology by dividing lithology sample data layer by layer and establishing a tree structure classification model. Mesozoic volcanic strata are widely developed in the Bohai Bay Basin, the rock types are complex and diverse, and the logging response is irregular. Taking the D oilfield of the Laizhouwan Sag in the Bohai Bay Basin as an example, this study selects volcanic rocks with good development scales and single-layer thicknesses of more than 0.2 m as samples. Based on a comparison of various lithology identification methods and both coring and logging data, using the decision tree analysis method and the probability density characteristics of logging parameters, six logging parameters with good sensitivity to the response of the volcanic rocks of the above formation are selected (resistivity (RD), spontaneous potential (SP), density (ZDEN), natural gamma ray (GR), acoustic (DT), and compensated neutron correction (CNCF) curves), which are combined to form a lithology classifier with a tree structure similar to a flow chart. This method can clearly express the process and result of identifying volcanic rock lithology with each logging curve. Additionally, crossplots and imaging logging are used to identify the volcanic rock structure, and the core data are used to correct the identified lithology. A combination of conventional logging, imaging logging and the decision tree method is proposed to identify volcanic rock lithology, which substantially improves the accuracy of rock identification.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76303-y</identifier><identifier>PMID: 33154548</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/213 ; 704/2151/431 ; 704/2151/598 ; Core analysis ; Decision trees ; Gamma rays ; Humanities and Social Sciences ; Lithology ; Logging ; Mesozoic ; multidisciplinary ; Oil and gas fields ; Science ; Science (multidisciplinary) ; Volcanic rocks</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.19209-19209, Article 19209</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a474t-bd226f4a00d8b6dbefdd7fecbe8d9df81a1a80999929491a385f76d351b1c97c3</citedby><cites>FETCH-LOGICAL-a474t-bd226f4a00d8b6dbefdd7fecbe8d9df81a1a80999929491a385f76d351b1c97c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645769/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645769/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids></links><search><creatorcontrib>Duan, Yajun</creatorcontrib><creatorcontrib>Xie, Jun</creatorcontrib><creatorcontrib>Su, Yanchun</creatorcontrib><creatorcontrib>Liang, Huizhen</creatorcontrib><creatorcontrib>Hu, Xiao</creatorcontrib><creatorcontrib>Wang, Qizhen</creatorcontrib><creatorcontrib>Pan, Zhiping</creatorcontrib><title>Application of the decision tree method to lithology identification of volcanic rocks-taking the Mesozoic in the Laizhouwan Sag as an example</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The decision tree method can be used to identify complex volcanic rock lithology by dividing lithology sample data layer by layer and establishing a tree structure classification model. Mesozoic volcanic strata are widely developed in the Bohai Bay Basin, the rock types are complex and diverse, and the logging response is irregular. Taking the D oilfield of the Laizhouwan Sag in the Bohai Bay Basin as an example, this study selects volcanic rocks with good development scales and single-layer thicknesses of more than 0.2 m as samples. Based on a comparison of various lithology identification methods and both coring and logging data, using the decision tree analysis method and the probability density characteristics of logging parameters, six logging parameters with good sensitivity to the response of the volcanic rocks of the above formation are selected (resistivity (RD), spontaneous potential (SP), density (ZDEN), natural gamma ray (GR), acoustic (DT), and compensated neutron correction (CNCF) curves), which are combined to form a lithology classifier with a tree structure similar to a flow chart. This method can clearly express the process and result of identifying volcanic rock lithology with each logging curve. Additionally, crossplots and imaging logging are used to identify the volcanic rock structure, and the core data are used to correct the identified lithology. A combination of conventional logging, imaging logging and the decision tree method is proposed to identify volcanic rock lithology, which substantially improves the accuracy of rock identification.</description><subject>704/2151/213</subject><subject>704/2151/431</subject><subject>704/2151/598</subject><subject>Core analysis</subject><subject>Decision trees</subject><subject>Gamma rays</subject><subject>Humanities and Social Sciences</subject><subject>Lithology</subject><subject>Logging</subject><subject>Mesozoic</subject><subject>multidisciplinary</subject><subject>Oil and gas fields</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Volcanic rocks</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9Uctu1TAUtBCIVqU_wMoSGzYBv5I4G6Sq4iVd1AWwthz7ONdtYgc7abn9B_4Z994KWhacjefozIw8GoReUvKGEi7fZkHrTlaEkaptOOHV7gk6ZkTUFeOMPX2Aj9BpzpekTM06Qbvn6IhzWotayGP062yeR2_04mPA0eFlC9iC8fluXxIAnmDZRouXiEdf0BiHHfYWwuLdA911HI0O3uAUzVWuFn3lw7B3-wI53sZy8WG_b7S_3cb1Rgf8VQ9YZ1wQ_NTTPMIL9MzpMcPp_XuCvn94_-38U7W5-Pj5_GxTadGKpeotY40TmhAr-8b24KxtHZgepO2sk1RTLUlXpgTuqOaydm1jeU17arrW8BP07uA7r_0E1pQ0SY9qTn7Saaei9urxJfitGuK1ahtRt01XDF7fG6T4Y4W8qMlnA-OoA8Q1KyZqWVpie-qrf6iXcU2hxCustvQgOiILix1YJsWcE7g_n6FE3RWuDoWrUrjaF652RcQPolzIYYD01_o_qt8n8LC8</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Duan, Yajun</creator><creator>Xie, Jun</creator><creator>Su, Yanchun</creator><creator>Liang, Huizhen</creator><creator>Hu, Xiao</creator><creator>Wang, Qizhen</creator><creator>Pan, Zhiping</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201105</creationdate><title>Application of the decision tree method to lithology identification of volcanic rocks-taking the Mesozoic in the Laizhouwan Sag as an example</title><author>Duan, Yajun ; Xie, Jun ; Su, Yanchun ; Liang, Huizhen ; Hu, Xiao ; Wang, Qizhen ; Pan, Zhiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-bd226f4a00d8b6dbefdd7fecbe8d9df81a1a80999929491a385f76d351b1c97c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>704/2151/213</topic><topic>704/2151/431</topic><topic>704/2151/598</topic><topic>Core analysis</topic><topic>Decision trees</topic><topic>Gamma rays</topic><topic>Humanities and Social Sciences</topic><topic>Lithology</topic><topic>Logging</topic><topic>Mesozoic</topic><topic>multidisciplinary</topic><topic>Oil and gas fields</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Volcanic rocks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Yajun</creatorcontrib><creatorcontrib>Xie, Jun</creatorcontrib><creatorcontrib>Su, Yanchun</creatorcontrib><creatorcontrib>Liang, Huizhen</creatorcontrib><creatorcontrib>Hu, Xiao</creatorcontrib><creatorcontrib>Wang, Qizhen</creatorcontrib><creatorcontrib>Pan, Zhiping</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Yajun</au><au>Xie, Jun</au><au>Su, Yanchun</au><au>Liang, Huizhen</au><au>Hu, Xiao</au><au>Wang, Qizhen</au><au>Pan, Zhiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the decision tree method to lithology identification of volcanic rocks-taking the Mesozoic in the Laizhouwan Sag as an example</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-11-05</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>19209</spage><epage>19209</epage><pages>19209-19209</pages><artnum>19209</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The decision tree method can be used to identify complex volcanic rock lithology by dividing lithology sample data layer by layer and establishing a tree structure classification model. Mesozoic volcanic strata are widely developed in the Bohai Bay Basin, the rock types are complex and diverse, and the logging response is irregular. Taking the D oilfield of the Laizhouwan Sag in the Bohai Bay Basin as an example, this study selects volcanic rocks with good development scales and single-layer thicknesses of more than 0.2 m as samples. Based on a comparison of various lithology identification methods and both coring and logging data, using the decision tree analysis method and the probability density characteristics of logging parameters, six logging parameters with good sensitivity to the response of the volcanic rocks of the above formation are selected (resistivity (RD), spontaneous potential (SP), density (ZDEN), natural gamma ray (GR), acoustic (DT), and compensated neutron correction (CNCF) curves), which are combined to form a lithology classifier with a tree structure similar to a flow chart. This method can clearly express the process and result of identifying volcanic rock lithology with each logging curve. Additionally, crossplots and imaging logging are used to identify the volcanic rock structure, and the core data are used to correct the identified lithology. A combination of conventional logging, imaging logging and the decision tree method is proposed to identify volcanic rock lithology, which substantially improves the accuracy of rock identification.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33154548</pmid><doi>10.1038/s41598-020-76303-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-11, Vol.10 (1), p.19209-19209, Article 19209
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645769
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 704/2151/213
704/2151/431
704/2151/598
Core analysis
Decision trees
Gamma rays
Humanities and Social Sciences
Lithology
Logging
Mesozoic
multidisciplinary
Oil and gas fields
Science
Science (multidisciplinary)
Volcanic rocks
title Application of the decision tree method to lithology identification of volcanic rocks-taking the Mesozoic in the Laizhouwan Sag as an example
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20decision%20tree%20method%20to%20lithology%20identification%20of%20volcanic%20rocks-taking%20the%20Mesozoic%20in%20the%20Laizhouwan%20Sag%20as%20an%20example&rft.jtitle=Scientific%20reports&rft.au=Duan,%20Yajun&rft.date=2020-11-05&rft.volume=10&rft.issue=1&rft.spage=19209&rft.epage=19209&rft.pages=19209-19209&rft.artnum=19209&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76303-y&rft_dat=%3Cproquest_pubme%3E2471544908%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471544908&rft_id=info:pmid/33154548&rfr_iscdi=true