Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography

Computed tomography (CT) is the preferred imaging method for diagnosing 2019 novel coronavirus (COVID19) pneumonia. We aimed to construct a system based on deep learning for detecting COVID-19 pneumonia on high resolution CT. For model development and validation, 46,096 anonymous images from 106 adm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-11, Vol.10 (1), p.19196-19196, Article 19196
Hauptverfasser: Chen, Jun, Wu, Lianlian, Zhang, Jun, Zhang, Liang, Gong, Dexin, Zhao, Yilin, Chen, Qiuxiang, Huang, Shulan, Yang, Ming, Yang, Xiao, Hu, Shan, Wang, Yonggui, Hu, Xiao, Zheng, Biqing, Zhang, Kuo, Wu, Huiling, Dong, Zehua, Xu, Youming, Zhu, Yijie, Chen, Xi, Zhang, Mengjiao, Yu, Lilei, Cheng, Fan, Yu, Honggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19196
container_issue 1
container_start_page 19196
container_title Scientific reports
container_volume 10
creator Chen, Jun
Wu, Lianlian
Zhang, Jun
Zhang, Liang
Gong, Dexin
Zhao, Yilin
Chen, Qiuxiang
Huang, Shulan
Yang, Ming
Yang, Xiao
Hu, Shan
Wang, Yonggui
Hu, Xiao
Zheng, Biqing
Zhang, Kuo
Wu, Huiling
Dong, Zehua
Xu, Youming
Zhu, Yijie
Chen, Xi
Zhang, Mengjiao
Yu, Lilei
Cheng, Fan
Yu, Honggang
description Computed tomography (CT) is the preferred imaging method for diagnosing 2019 novel coronavirus (COVID19) pneumonia. We aimed to construct a system based on deep learning for detecting COVID-19 pneumonia on high resolution CT. For model development and validation, 46,096 anonymous images from 106 admitted patients, including 51 patients of laboratory confirmed COVID-19 pneumonia and 55 control patients of other diseases in Renmin Hospital of Wuhan University were retrospectively collected. Twenty-seven prospective consecutive patients in Renmin Hospital of Wuhan University were collected to evaluate the efficiency of radiologists against 2019-CoV pneumonia with that of the model. An external test was conducted in Qianjiang Central Hospital to estimate the system’s robustness. The model achieved a per-patient accuracy of 95.24% and a per-image accuracy of 98.85% in internal retrospective dataset. For 27 internal prospective patients, the system achieved a comparable performance to that of expert radiologist. In external dataset, it achieved an accuracy of 96%. With the assistance of the model, the reading time of radiologists was greatly decreased by 65%. The deep learning model showed a comparable performance with expert radiologist, and greatly improved the efficiency of radiologists in clinical practice.
doi_str_mv 10.1038/s41598-020-76282-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471541097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-bd46eeb9656e21b36bb1178671f4011446189ce04535513786f93d891970feb73</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EolXbP9AFssSGjYvfjjdIqDyKVKkburacZJLrKrGDnVyp_x6XW0phgTe2dc4cz_hD6JzRC0ZF875IpmxDKKfEaN5wQl-gY06lIlxw_vLZ-QidlXJH61LcSmZfoyMhmJJK8mOUPgEseAKfY4gjaX2BHs-phwkPKeMeVujWqmBOmcUx7avQpZyi34e8FbxE2OYUg8cp4l0YdyRDSdO2hnrv0rxsaw1c05zG7Jfd_Sl6NfipwNnjfoJuv3z-fnlFrm--frv8eE06aeRK2l5qgNZqpYGzVui2Zcw02rBBUsak1KyxHdQRhVJMVGWwom8ss4YO0Bpxgj4ccpetnaHvIK7ZT27JYfb53iUf3N9KDDs3pr0zWirNZQ149xiQ048NyurmUDqYJh8hbcVxqZrKQRhVrW__sd6lLcc6XnWZ-tOM2oeO-MHV5VRKhuGpGUbdA1J3QOoqUvcLqaO16M3zMZ5KfgOsBnEwlCrFEfKft_8T-xP9o6y0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471541097</pqid></control><display><type>article</type><title>Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Jun ; Wu, Lianlian ; Zhang, Jun ; Zhang, Liang ; Gong, Dexin ; Zhao, Yilin ; Chen, Qiuxiang ; Huang, Shulan ; Yang, Ming ; Yang, Xiao ; Hu, Shan ; Wang, Yonggui ; Hu, Xiao ; Zheng, Biqing ; Zhang, Kuo ; Wu, Huiling ; Dong, Zehua ; Xu, Youming ; Zhu, Yijie ; Chen, Xi ; Zhang, Mengjiao ; Yu, Lilei ; Cheng, Fan ; Yu, Honggang</creator><creatorcontrib>Chen, Jun ; Wu, Lianlian ; Zhang, Jun ; Zhang, Liang ; Gong, Dexin ; Zhao, Yilin ; Chen, Qiuxiang ; Huang, Shulan ; Yang, Ming ; Yang, Xiao ; Hu, Shan ; Wang, Yonggui ; Hu, Xiao ; Zheng, Biqing ; Zhang, Kuo ; Wu, Huiling ; Dong, Zehua ; Xu, Youming ; Zhu, Yijie ; Chen, Xi ; Zhang, Mengjiao ; Yu, Lilei ; Cheng, Fan ; Yu, Honggang</creatorcontrib><description>Computed tomography (CT) is the preferred imaging method for diagnosing 2019 novel coronavirus (COVID19) pneumonia. We aimed to construct a system based on deep learning for detecting COVID-19 pneumonia on high resolution CT. For model development and validation, 46,096 anonymous images from 106 admitted patients, including 51 patients of laboratory confirmed COVID-19 pneumonia and 55 control patients of other diseases in Renmin Hospital of Wuhan University were retrospectively collected. Twenty-seven prospective consecutive patients in Renmin Hospital of Wuhan University were collected to evaluate the efficiency of radiologists against 2019-CoV pneumonia with that of the model. An external test was conducted in Qianjiang Central Hospital to estimate the system’s robustness. The model achieved a per-patient accuracy of 95.24% and a per-image accuracy of 98.85% in internal retrospective dataset. For 27 internal prospective patients, the system achieved a comparable performance to that of expert radiologist. In external dataset, it achieved an accuracy of 96%. With the assistance of the model, the reading time of radiologists was greatly decreased by 65%. The deep learning model showed a comparable performance with expert radiologist, and greatly improved the efficiency of radiologists in clinical practice.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76282-0</identifier><identifier>PMID: 33154542</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/2521 ; 692/699/255/2514 ; Accuracy ; Adult ; Computed tomography ; Coronaviridae ; Coronavirus Infections - complications ; Coronaviruses ; COVID-19 ; Deep Learning ; Female ; Humanities and Social Sciences ; Humans ; Image Processing, Computer-Assisted - methods ; Male ; Middle Aged ; multidisciplinary ; Pandemics ; Patients ; Pneumonia ; Pneumonia - complications ; Pneumonia - diagnostic imaging ; Pneumonia, Viral - complications ; Retrospective Studies ; Science ; Science (multidisciplinary) ; Signal-To-Noise Ratio ; Tomography, X-Ray Computed</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.19196-19196, Article 19196</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-bd46eeb9656e21b36bb1178671f4011446189ce04535513786f93d891970feb73</citedby><cites>FETCH-LOGICAL-c474t-bd46eeb9656e21b36bb1178671f4011446189ce04535513786f93d891970feb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645624/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645624/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,41122,42191,51578,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33154542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Wu, Lianlian</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Gong, Dexin</creatorcontrib><creatorcontrib>Zhao, Yilin</creatorcontrib><creatorcontrib>Chen, Qiuxiang</creatorcontrib><creatorcontrib>Huang, Shulan</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Hu, Shan</creatorcontrib><creatorcontrib>Wang, Yonggui</creatorcontrib><creatorcontrib>Hu, Xiao</creatorcontrib><creatorcontrib>Zheng, Biqing</creatorcontrib><creatorcontrib>Zhang, Kuo</creatorcontrib><creatorcontrib>Wu, Huiling</creatorcontrib><creatorcontrib>Dong, Zehua</creatorcontrib><creatorcontrib>Xu, Youming</creatorcontrib><creatorcontrib>Zhu, Yijie</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Zhang, Mengjiao</creatorcontrib><creatorcontrib>Yu, Lilei</creatorcontrib><creatorcontrib>Cheng, Fan</creatorcontrib><creatorcontrib>Yu, Honggang</creatorcontrib><title>Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Computed tomography (CT) is the preferred imaging method for diagnosing 2019 novel coronavirus (COVID19) pneumonia. We aimed to construct a system based on deep learning for detecting COVID-19 pneumonia on high resolution CT. For model development and validation, 46,096 anonymous images from 106 admitted patients, including 51 patients of laboratory confirmed COVID-19 pneumonia and 55 control patients of other diseases in Renmin Hospital of Wuhan University were retrospectively collected. Twenty-seven prospective consecutive patients in Renmin Hospital of Wuhan University were collected to evaluate the efficiency of radiologists against 2019-CoV pneumonia with that of the model. An external test was conducted in Qianjiang Central Hospital to estimate the system’s robustness. The model achieved a per-patient accuracy of 95.24% and a per-image accuracy of 98.85% in internal retrospective dataset. For 27 internal prospective patients, the system achieved a comparable performance to that of expert radiologist. In external dataset, it achieved an accuracy of 96%. With the assistance of the model, the reading time of radiologists was greatly decreased by 65%. The deep learning model showed a comparable performance with expert radiologist, and greatly improved the efficiency of radiologists in clinical practice.</description><subject>631/326/2521</subject><subject>692/699/255/2514</subject><subject>Accuracy</subject><subject>Adult</subject><subject>Computed tomography</subject><subject>Coronaviridae</subject><subject>Coronavirus Infections - complications</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>multidisciplinary</subject><subject>Pandemics</subject><subject>Patients</subject><subject>Pneumonia</subject><subject>Pneumonia - complications</subject><subject>Pneumonia - diagnostic imaging</subject><subject>Pneumonia, Viral - complications</subject><subject>Retrospective Studies</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal-To-Noise Ratio</subject><subject>Tomography, X-Ray Computed</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1TAQhS0EolXbP9AFssSGjYvfjjdIqDyKVKkburacZJLrKrGDnVyp_x6XW0phgTe2dc4cz_hD6JzRC0ZF875IpmxDKKfEaN5wQl-gY06lIlxw_vLZ-QidlXJH61LcSmZfoyMhmJJK8mOUPgEseAKfY4gjaX2BHs-phwkPKeMeVujWqmBOmcUx7avQpZyi34e8FbxE2OYUg8cp4l0YdyRDSdO2hnrv0rxsaw1c05zG7Jfd_Sl6NfipwNnjfoJuv3z-fnlFrm--frv8eE06aeRK2l5qgNZqpYGzVui2Zcw02rBBUsak1KyxHdQRhVJMVGWwom8ss4YO0Bpxgj4ccpetnaHvIK7ZT27JYfb53iUf3N9KDDs3pr0zWirNZQ149xiQ048NyurmUDqYJh8hbcVxqZrKQRhVrW__sd6lLcc6XnWZ-tOM2oeO-MHV5VRKhuGpGUbdA1J3QOoqUvcLqaO16M3zMZ5KfgOsBnEwlCrFEfKft_8T-xP9o6y0</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Chen, Jun</creator><creator>Wu, Lianlian</creator><creator>Zhang, Jun</creator><creator>Zhang, Liang</creator><creator>Gong, Dexin</creator><creator>Zhao, Yilin</creator><creator>Chen, Qiuxiang</creator><creator>Huang, Shulan</creator><creator>Yang, Ming</creator><creator>Yang, Xiao</creator><creator>Hu, Shan</creator><creator>Wang, Yonggui</creator><creator>Hu, Xiao</creator><creator>Zheng, Biqing</creator><creator>Zhang, Kuo</creator><creator>Wu, Huiling</creator><creator>Dong, Zehua</creator><creator>Xu, Youming</creator><creator>Zhu, Yijie</creator><creator>Chen, Xi</creator><creator>Zhang, Mengjiao</creator><creator>Yu, Lilei</creator><creator>Cheng, Fan</creator><creator>Yu, Honggang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201105</creationdate><title>Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography</title><author>Chen, Jun ; Wu, Lianlian ; Zhang, Jun ; Zhang, Liang ; Gong, Dexin ; Zhao, Yilin ; Chen, Qiuxiang ; Huang, Shulan ; Yang, Ming ; Yang, Xiao ; Hu, Shan ; Wang, Yonggui ; Hu, Xiao ; Zheng, Biqing ; Zhang, Kuo ; Wu, Huiling ; Dong, Zehua ; Xu, Youming ; Zhu, Yijie ; Chen, Xi ; Zhang, Mengjiao ; Yu, Lilei ; Cheng, Fan ; Yu, Honggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-bd46eeb9656e21b36bb1178671f4011446189ce04535513786f93d891970feb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/326/2521</topic><topic>692/699/255/2514</topic><topic>Accuracy</topic><topic>Adult</topic><topic>Computed tomography</topic><topic>Coronaviridae</topic><topic>Coronavirus Infections - complications</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>multidisciplinary</topic><topic>Pandemics</topic><topic>Patients</topic><topic>Pneumonia</topic><topic>Pneumonia - complications</topic><topic>Pneumonia - diagnostic imaging</topic><topic>Pneumonia, Viral - complications</topic><topic>Retrospective Studies</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal-To-Noise Ratio</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Wu, Lianlian</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Gong, Dexin</creatorcontrib><creatorcontrib>Zhao, Yilin</creatorcontrib><creatorcontrib>Chen, Qiuxiang</creatorcontrib><creatorcontrib>Huang, Shulan</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Hu, Shan</creatorcontrib><creatorcontrib>Wang, Yonggui</creatorcontrib><creatorcontrib>Hu, Xiao</creatorcontrib><creatorcontrib>Zheng, Biqing</creatorcontrib><creatorcontrib>Zhang, Kuo</creatorcontrib><creatorcontrib>Wu, Huiling</creatorcontrib><creatorcontrib>Dong, Zehua</creatorcontrib><creatorcontrib>Xu, Youming</creatorcontrib><creatorcontrib>Zhu, Yijie</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Zhang, Mengjiao</creatorcontrib><creatorcontrib>Yu, Lilei</creatorcontrib><creatorcontrib>Cheng, Fan</creatorcontrib><creatorcontrib>Yu, Honggang</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jun</au><au>Wu, Lianlian</au><au>Zhang, Jun</au><au>Zhang, Liang</au><au>Gong, Dexin</au><au>Zhao, Yilin</au><au>Chen, Qiuxiang</au><au>Huang, Shulan</au><au>Yang, Ming</au><au>Yang, Xiao</au><au>Hu, Shan</au><au>Wang, Yonggui</au><au>Hu, Xiao</au><au>Zheng, Biqing</au><au>Zhang, Kuo</au><au>Wu, Huiling</au><au>Dong, Zehua</au><au>Xu, Youming</au><au>Zhu, Yijie</au><au>Chen, Xi</au><au>Zhang, Mengjiao</au><au>Yu, Lilei</au><au>Cheng, Fan</au><au>Yu, Honggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>19196</spage><epage>19196</epage><pages>19196-19196</pages><artnum>19196</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Computed tomography (CT) is the preferred imaging method for diagnosing 2019 novel coronavirus (COVID19) pneumonia. We aimed to construct a system based on deep learning for detecting COVID-19 pneumonia on high resolution CT. For model development and validation, 46,096 anonymous images from 106 admitted patients, including 51 patients of laboratory confirmed COVID-19 pneumonia and 55 control patients of other diseases in Renmin Hospital of Wuhan University were retrospectively collected. Twenty-seven prospective consecutive patients in Renmin Hospital of Wuhan University were collected to evaluate the efficiency of radiologists against 2019-CoV pneumonia with that of the model. An external test was conducted in Qianjiang Central Hospital to estimate the system’s robustness. The model achieved a per-patient accuracy of 95.24% and a per-image accuracy of 98.85% in internal retrospective dataset. For 27 internal prospective patients, the system achieved a comparable performance to that of expert radiologist. In external dataset, it achieved an accuracy of 96%. With the assistance of the model, the reading time of radiologists was greatly decreased by 65%. The deep learning model showed a comparable performance with expert radiologist, and greatly improved the efficiency of radiologists in clinical practice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33154542</pmid><doi>10.1038/s41598-020-76282-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-11, Vol.10 (1), p.19196-19196, Article 19196
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645624
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 631/326/2521
692/699/255/2514
Accuracy
Adult
Computed tomography
Coronaviridae
Coronavirus Infections - complications
Coronaviruses
COVID-19
Deep Learning
Female
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Male
Middle Aged
multidisciplinary
Pandemics
Patients
Pneumonia
Pneumonia - complications
Pneumonia - diagnostic imaging
Pneumonia, Viral - complications
Retrospective Studies
Science
Science (multidisciplinary)
Signal-To-Noise Ratio
Tomography, X-Ray Computed
title Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20model%20for%20detecting%202019%20novel%20coronavirus%20pneumonia%20on%20high-resolution%20computed%20tomography&rft.jtitle=Scientific%20reports&rft.au=Chen,%20Jun&rft.date=2020-11-05&rft.volume=10&rft.issue=1&rft.spage=19196&rft.epage=19196&rft.pages=19196-19196&rft.artnum=19196&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76282-0&rft_dat=%3Cproquest_pubme%3E2471541097%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471541097&rft_id=info:pmid/33154542&rfr_iscdi=true