Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response
Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mo...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2020-11, Vol.21 (11), p.e50829-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | e50829 |
container_title | EMBO reports |
container_volume | 21 |
creator | Eren, Elif Planès, Rémi Bagayoko, Salimata Bordignon, Pierre‐Jean Chaoui, Karima Hessel, Audrey Santoni, Karin Pinilla, Miriam Lagrange, Brice Burlet‐Schiltz, Odile Howard, Jonathan C Henry, Thomas Yamamoto, Masahiro Meunier, Etienne |
description | Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and
in vivo
. Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in
Irgm2
or
Gate16
induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Synopsis
Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.
Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation.
Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner.
Irgm2 deficiency enhances endotoxemia susceptibility of mice.
Graphical Abstract
Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. |
doi_str_mv | 10.15252/embr.202050829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457846868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEoj-wZocisaGLaf3vmAVSqcq00iAkBBI7y7FvpqkSJ7WTQbPjEXhGngTPZBhKJcTK1r3fOffaJ8teYHSKOeHkDNoynBJEEEcFUY-yQ8yEmlEsi8e7OyH460F2FOMtQogrWTzNDijFhEmhDjNzHZYtyY13-dwM8PP7Dyxy23U9BDPUK2jWuTNtDz6fB9OmtofltpGXxg4QapNqtXejBZdbE3sTtyY4DxD7zkd4lj2pTBPh-e48zr68v_x8cTVbfJxfX5wvZlZQpWYVqiRzyFrGEZdVIQk4w0qnSgMGKSItlqCQohUmVUUwZVRyAoUxjDrrFD3O3k6-_Vi24Cz4IZhG96FuTVjrztT6746vb_SyW2kpGCdIJIOTyeDmgezqfKE3NUSUklyIFU7s692w0N2NEAfd1tFC0xgP3Rg1YVwwLDCnCX31AL3txuDTV2woWTBRiCJRZxNlQxdjgGq_AUZ6G7XeRK33USfFy_vv3fO_s03Amwn4Vjew_p-fvvzw7tN9dzSJY9L5JYQ_W_9roV-CwMl6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457846868</pqid></control><display><type>article</type><title>Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response</title><source>Springer Nature OA Free Journals</source><creator>Eren, Elif ; Planès, Rémi ; Bagayoko, Salimata ; Bordignon, Pierre‐Jean ; Chaoui, Karima ; Hessel, Audrey ; Santoni, Karin ; Pinilla, Miriam ; Lagrange, Brice ; Burlet‐Schiltz, Odile ; Howard, Jonathan C ; Henry, Thomas ; Yamamoto, Masahiro ; Meunier, Etienne</creator><creatorcontrib>Eren, Elif ; Planès, Rémi ; Bagayoko, Salimata ; Bordignon, Pierre‐Jean ; Chaoui, Karima ; Hessel, Audrey ; Santoni, Karin ; Pinilla, Miriam ; Lagrange, Brice ; Burlet‐Schiltz, Odile ; Howard, Jonathan C ; Henry, Thomas ; Yamamoto, Masahiro ; Meunier, Etienne</creatorcontrib><description>Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and
in vivo
. Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in
Irgm2
or
Gate16
induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Synopsis
Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.
Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation.
Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner.
Irgm2 deficiency enhances endotoxemia susceptibility of mice.
Graphical Abstract
Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202050829</identifier><identifier>PMID: 33124769</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animal biology ; Autophagy ; Autophagy-Related Protein 8 Family ; Bacteria ; Caspase ; Caspases - genetics ; Caspases, Initiator ; Caspase‐11 ; Cell activation ; Cytokines ; Cytosol ; EMBO07 ; EMBO19 ; EMBO23 ; Endotoxemia ; Gate‐16 ; Gram-Negative Bacteria ; Immune response ; Immune system ; infections/Interferons ; Inflammasomes ; Inflammasomes - genetics ; Inflammation ; Interferon ; Intracellular ; Irgm2 ; Life Sciences ; Lipopolysaccharides ; Macrophages ; non‐canonical inflammasome ; Phagocytosis ; Proteins ; Pyroptosis ; Sepsis</subject><ispartof>EMBO reports, 2020-11, Vol.21 (11), p.e50829-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors</rights><rights>2020 The Authors.</rights><rights>2020 EMBO</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93</citedby><cites>FETCH-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93</cites><orcidid>0000-0002-0687-8565 ; 0000-0002-3651-4877 ; 0000-0002-0956-4641 ; 0000-0002-0328-5609 ; 0000-0003-3695-3965 ; 0000-0003-4317-7706 ; 0000-0002-8612-3065 ; 0000-0002-3489-4474 ; 0000-0003-4073-8117 ; 0000-0002-3606-2356 ; 0000-0002-5688-9844 ; 0000-0002-4131-5995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645206/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645206/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embr.202050829$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33124769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02997566$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eren, Elif</creatorcontrib><creatorcontrib>Planès, Rémi</creatorcontrib><creatorcontrib>Bagayoko, Salimata</creatorcontrib><creatorcontrib>Bordignon, Pierre‐Jean</creatorcontrib><creatorcontrib>Chaoui, Karima</creatorcontrib><creatorcontrib>Hessel, Audrey</creatorcontrib><creatorcontrib>Santoni, Karin</creatorcontrib><creatorcontrib>Pinilla, Miriam</creatorcontrib><creatorcontrib>Lagrange, Brice</creatorcontrib><creatorcontrib>Burlet‐Schiltz, Odile</creatorcontrib><creatorcontrib>Howard, Jonathan C</creatorcontrib><creatorcontrib>Henry, Thomas</creatorcontrib><creatorcontrib>Yamamoto, Masahiro</creatorcontrib><creatorcontrib>Meunier, Etienne</creatorcontrib><title>Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and
in vivo
. Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in
Irgm2
or
Gate16
induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Synopsis
Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.
Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation.
Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner.
Irgm2 deficiency enhances endotoxemia susceptibility of mice.
Graphical Abstract
Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.</description><subject>Animal biology</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 8 Family</subject><subject>Bacteria</subject><subject>Caspase</subject><subject>Caspases - genetics</subject><subject>Caspases, Initiator</subject><subject>Caspase‐11</subject><subject>Cell activation</subject><subject>Cytokines</subject><subject>Cytosol</subject><subject>EMBO07</subject><subject>EMBO19</subject><subject>EMBO23</subject><subject>Endotoxemia</subject><subject>Gate‐16</subject><subject>Gram-Negative Bacteria</subject><subject>Immune response</subject><subject>Immune system</subject><subject>infections/Interferons</subject><subject>Inflammasomes</subject><subject>Inflammasomes - genetics</subject><subject>Inflammation</subject><subject>Interferon</subject><subject>Intracellular</subject><subject>Irgm2</subject><subject>Life Sciences</subject><subject>Lipopolysaccharides</subject><subject>Macrophages</subject><subject>non‐canonical inflammasome</subject><subject>Phagocytosis</subject><subject>Proteins</subject><subject>Pyroptosis</subject><subject>Sepsis</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEoj-wZocisaGLaf3vmAVSqcq00iAkBBI7y7FvpqkSJ7WTQbPjEXhGngTPZBhKJcTK1r3fOffaJ8teYHSKOeHkDNoynBJEEEcFUY-yQ8yEmlEsi8e7OyH460F2FOMtQogrWTzNDijFhEmhDjNzHZYtyY13-dwM8PP7Dyxy23U9BDPUK2jWuTNtDz6fB9OmtofltpGXxg4QapNqtXejBZdbE3sTtyY4DxD7zkd4lj2pTBPh-e48zr68v_x8cTVbfJxfX5wvZlZQpWYVqiRzyFrGEZdVIQk4w0qnSgMGKSItlqCQohUmVUUwZVRyAoUxjDrrFD3O3k6-_Vi24Cz4IZhG96FuTVjrztT6746vb_SyW2kpGCdIJIOTyeDmgezqfKE3NUSUklyIFU7s692w0N2NEAfd1tFC0xgP3Rg1YVwwLDCnCX31AL3txuDTV2woWTBRiCJRZxNlQxdjgGq_AUZ6G7XeRK33USfFy_vv3fO_s03Amwn4Vjew_p-fvvzw7tN9dzSJY9L5JYQ_W_9roV-CwMl6</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Eren, Elif</creator><creator>Planès, Rémi</creator><creator>Bagayoko, Salimata</creator><creator>Bordignon, Pierre‐Jean</creator><creator>Chaoui, Karima</creator><creator>Hessel, Audrey</creator><creator>Santoni, Karin</creator><creator>Pinilla, Miriam</creator><creator>Lagrange, Brice</creator><creator>Burlet‐Schiltz, Odile</creator><creator>Howard, Jonathan C</creator><creator>Henry, Thomas</creator><creator>Yamamoto, Masahiro</creator><creator>Meunier, Etienne</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0687-8565</orcidid><orcidid>https://orcid.org/0000-0002-3651-4877</orcidid><orcidid>https://orcid.org/0000-0002-0956-4641</orcidid><orcidid>https://orcid.org/0000-0002-0328-5609</orcidid><orcidid>https://orcid.org/0000-0003-3695-3965</orcidid><orcidid>https://orcid.org/0000-0003-4317-7706</orcidid><orcidid>https://orcid.org/0000-0002-8612-3065</orcidid><orcidid>https://orcid.org/0000-0002-3489-4474</orcidid><orcidid>https://orcid.org/0000-0003-4073-8117</orcidid><orcidid>https://orcid.org/0000-0002-3606-2356</orcidid><orcidid>https://orcid.org/0000-0002-5688-9844</orcidid><orcidid>https://orcid.org/0000-0002-4131-5995</orcidid></search><sort><creationdate>20201105</creationdate><title>Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response</title><author>Eren, Elif ; Planès, Rémi ; Bagayoko, Salimata ; Bordignon, Pierre‐Jean ; Chaoui, Karima ; Hessel, Audrey ; Santoni, Karin ; Pinilla, Miriam ; Lagrange, Brice ; Burlet‐Schiltz, Odile ; Howard, Jonathan C ; Henry, Thomas ; Yamamoto, Masahiro ; Meunier, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal biology</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 8 Family</topic><topic>Bacteria</topic><topic>Caspase</topic><topic>Caspases - genetics</topic><topic>Caspases, Initiator</topic><topic>Caspase‐11</topic><topic>Cell activation</topic><topic>Cytokines</topic><topic>Cytosol</topic><topic>EMBO07</topic><topic>EMBO19</topic><topic>EMBO23</topic><topic>Endotoxemia</topic><topic>Gate‐16</topic><topic>Gram-Negative Bacteria</topic><topic>Immune response</topic><topic>Immune system</topic><topic>infections/Interferons</topic><topic>Inflammasomes</topic><topic>Inflammasomes - genetics</topic><topic>Inflammation</topic><topic>Interferon</topic><topic>Intracellular</topic><topic>Irgm2</topic><topic>Life Sciences</topic><topic>Lipopolysaccharides</topic><topic>Macrophages</topic><topic>non‐canonical inflammasome</topic><topic>Phagocytosis</topic><topic>Proteins</topic><topic>Pyroptosis</topic><topic>Sepsis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eren, Elif</creatorcontrib><creatorcontrib>Planès, Rémi</creatorcontrib><creatorcontrib>Bagayoko, Salimata</creatorcontrib><creatorcontrib>Bordignon, Pierre‐Jean</creatorcontrib><creatorcontrib>Chaoui, Karima</creatorcontrib><creatorcontrib>Hessel, Audrey</creatorcontrib><creatorcontrib>Santoni, Karin</creatorcontrib><creatorcontrib>Pinilla, Miriam</creatorcontrib><creatorcontrib>Lagrange, Brice</creatorcontrib><creatorcontrib>Burlet‐Schiltz, Odile</creatorcontrib><creatorcontrib>Howard, Jonathan C</creatorcontrib><creatorcontrib>Henry, Thomas</creatorcontrib><creatorcontrib>Yamamoto, Masahiro</creatorcontrib><creatorcontrib>Meunier, Etienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eren, Elif</au><au>Planès, Rémi</au><au>Bagayoko, Salimata</au><au>Bordignon, Pierre‐Jean</au><au>Chaoui, Karima</au><au>Hessel, Audrey</au><au>Santoni, Karin</au><au>Pinilla, Miriam</au><au>Lagrange, Brice</au><au>Burlet‐Schiltz, Odile</au><au>Howard, Jonathan C</au><au>Henry, Thomas</au><au>Yamamoto, Masahiro</au><au>Meunier, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>21</volume><issue>11</issue><spage>e50829</spage><epage>n/a</epage><pages>e50829-n/a</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and
in vivo
. Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in
Irgm2
or
Gate16
induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Synopsis
Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.
Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation.
Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner.
Irgm2 deficiency enhances endotoxemia susceptibility of mice.
Graphical Abstract
Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33124769</pmid><doi>10.15252/embr.202050829</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0687-8565</orcidid><orcidid>https://orcid.org/0000-0002-3651-4877</orcidid><orcidid>https://orcid.org/0000-0002-0956-4641</orcidid><orcidid>https://orcid.org/0000-0002-0328-5609</orcidid><orcidid>https://orcid.org/0000-0003-3695-3965</orcidid><orcidid>https://orcid.org/0000-0003-4317-7706</orcidid><orcidid>https://orcid.org/0000-0002-8612-3065</orcidid><orcidid>https://orcid.org/0000-0002-3489-4474</orcidid><orcidid>https://orcid.org/0000-0003-4073-8117</orcidid><orcidid>https://orcid.org/0000-0002-3606-2356</orcidid><orcidid>https://orcid.org/0000-0002-5688-9844</orcidid><orcidid>https://orcid.org/0000-0002-4131-5995</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2020-11, Vol.21 (11), p.e50829-n/a |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645206 |
source | Springer Nature OA Free Journals |
subjects | Animal biology Autophagy Autophagy-Related Protein 8 Family Bacteria Caspase Caspases - genetics Caspases, Initiator Caspase‐11 Cell activation Cytokines Cytosol EMBO07 EMBO19 EMBO23 Endotoxemia Gate‐16 Gram-Negative Bacteria Immune response Immune system infections/Interferons Inflammasomes Inflammasomes - genetics Inflammation Interferon Intracellular Irgm2 Life Sciences Lipopolysaccharides Macrophages non‐canonical inflammasome Phagocytosis Proteins Pyroptosis Sepsis |
title | Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irgm2%20and%20Gate%E2%80%9016%20cooperatively%20dampen%20Gram%E2%80%90negative%20bacteria%E2%80%90induced%20caspase%E2%80%9011%20response&rft.jtitle=EMBO%20reports&rft.au=Eren,%20Elif&rft.date=2020-11-05&rft.volume=21&rft.issue=11&rft.spage=e50829&rft.epage=n/a&rft.pages=e50829-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202050829&rft_dat=%3Cproquest_C6C%3E2457846868%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457846868&rft_id=info:pmid/33124769&rfr_iscdi=true |