Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response

Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2020-11, Vol.21 (11), p.e50829-n/a
Hauptverfasser: Eren, Elif, Planès, Rémi, Bagayoko, Salimata, Bordignon, Pierre‐Jean, Chaoui, Karima, Hessel, Audrey, Santoni, Karin, Pinilla, Miriam, Lagrange, Brice, Burlet‐Schiltz, Odile, Howard, Jonathan C, Henry, Thomas, Yamamoto, Masahiro, Meunier, Etienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e50829
container_title EMBO reports
container_volume 21
creator Eren, Elif
Planès, Rémi
Bagayoko, Salimata
Bordignon, Pierre‐Jean
Chaoui, Karima
Hessel, Audrey
Santoni, Karin
Pinilla, Miriam
Lagrange, Brice
Burlet‐Schiltz, Odile
Howard, Jonathan C
Henry, Thomas
Yamamoto, Masahiro
Meunier, Etienne
description Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo . Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Synopsis Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation. Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner. Irgm2 deficiency enhances endotoxemia susceptibility of mice. Graphical Abstract Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.
doi_str_mv 10.15252/embr.202050829
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457846868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEoj-wZocisaGLaf3vmAVSqcq00iAkBBI7y7FvpqkSJ7WTQbPjEXhGngTPZBhKJcTK1r3fOffaJ8teYHSKOeHkDNoynBJEEEcFUY-yQ8yEmlEsi8e7OyH460F2FOMtQogrWTzNDijFhEmhDjNzHZYtyY13-dwM8PP7Dyxy23U9BDPUK2jWuTNtDz6fB9OmtofltpGXxg4QapNqtXejBZdbE3sTtyY4DxD7zkd4lj2pTBPh-e48zr68v_x8cTVbfJxfX5wvZlZQpWYVqiRzyFrGEZdVIQk4w0qnSgMGKSItlqCQohUmVUUwZVRyAoUxjDrrFD3O3k6-_Vi24Cz4IZhG96FuTVjrztT6746vb_SyW2kpGCdIJIOTyeDmgezqfKE3NUSUklyIFU7s692w0N2NEAfd1tFC0xgP3Rg1YVwwLDCnCX31AL3txuDTV2woWTBRiCJRZxNlQxdjgGq_AUZ6G7XeRK33USfFy_vv3fO_s03Amwn4Vjew_p-fvvzw7tN9dzSJY9L5JYQ_W_9roV-CwMl6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457846868</pqid></control><display><type>article</type><title>Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response</title><source>Springer Nature OA Free Journals</source><creator>Eren, Elif ; Planès, Rémi ; Bagayoko, Salimata ; Bordignon, Pierre‐Jean ; Chaoui, Karima ; Hessel, Audrey ; Santoni, Karin ; Pinilla, Miriam ; Lagrange, Brice ; Burlet‐Schiltz, Odile ; Howard, Jonathan C ; Henry, Thomas ; Yamamoto, Masahiro ; Meunier, Etienne</creator><creatorcontrib>Eren, Elif ; Planès, Rémi ; Bagayoko, Salimata ; Bordignon, Pierre‐Jean ; Chaoui, Karima ; Hessel, Audrey ; Santoni, Karin ; Pinilla, Miriam ; Lagrange, Brice ; Burlet‐Schiltz, Odile ; Howard, Jonathan C ; Henry, Thomas ; Yamamoto, Masahiro ; Meunier, Etienne</creatorcontrib><description>Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo . Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Synopsis Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation. Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner. Irgm2 deficiency enhances endotoxemia susceptibility of mice. Graphical Abstract Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202050829</identifier><identifier>PMID: 33124769</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animal biology ; Autophagy ; Autophagy-Related Protein 8 Family ; Bacteria ; Caspase ; Caspases - genetics ; Caspases, Initiator ; Caspase‐11 ; Cell activation ; Cytokines ; Cytosol ; EMBO07 ; EMBO19 ; EMBO23 ; Endotoxemia ; Gate‐16 ; Gram-Negative Bacteria ; Immune response ; Immune system ; infections/Interferons ; Inflammasomes ; Inflammasomes - genetics ; Inflammation ; Interferon ; Intracellular ; Irgm2 ; Life Sciences ; Lipopolysaccharides ; Macrophages ; non‐canonical inflammasome ; Phagocytosis ; Proteins ; Pyroptosis ; Sepsis</subject><ispartof>EMBO reports, 2020-11, Vol.21 (11), p.e50829-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors</rights><rights>2020 The Authors.</rights><rights>2020 EMBO</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93</citedby><cites>FETCH-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93</cites><orcidid>0000-0002-0687-8565 ; 0000-0002-3651-4877 ; 0000-0002-0956-4641 ; 0000-0002-0328-5609 ; 0000-0003-3695-3965 ; 0000-0003-4317-7706 ; 0000-0002-8612-3065 ; 0000-0002-3489-4474 ; 0000-0003-4073-8117 ; 0000-0002-3606-2356 ; 0000-0002-5688-9844 ; 0000-0002-4131-5995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645206/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645206/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embr.202050829$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33124769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02997566$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eren, Elif</creatorcontrib><creatorcontrib>Planès, Rémi</creatorcontrib><creatorcontrib>Bagayoko, Salimata</creatorcontrib><creatorcontrib>Bordignon, Pierre‐Jean</creatorcontrib><creatorcontrib>Chaoui, Karima</creatorcontrib><creatorcontrib>Hessel, Audrey</creatorcontrib><creatorcontrib>Santoni, Karin</creatorcontrib><creatorcontrib>Pinilla, Miriam</creatorcontrib><creatorcontrib>Lagrange, Brice</creatorcontrib><creatorcontrib>Burlet‐Schiltz, Odile</creatorcontrib><creatorcontrib>Howard, Jonathan C</creatorcontrib><creatorcontrib>Henry, Thomas</creatorcontrib><creatorcontrib>Yamamoto, Masahiro</creatorcontrib><creatorcontrib>Meunier, Etienne</creatorcontrib><title>Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo . Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Synopsis Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation. Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner. Irgm2 deficiency enhances endotoxemia susceptibility of mice. Graphical Abstract Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.</description><subject>Animal biology</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 8 Family</subject><subject>Bacteria</subject><subject>Caspase</subject><subject>Caspases - genetics</subject><subject>Caspases, Initiator</subject><subject>Caspase‐11</subject><subject>Cell activation</subject><subject>Cytokines</subject><subject>Cytosol</subject><subject>EMBO07</subject><subject>EMBO19</subject><subject>EMBO23</subject><subject>Endotoxemia</subject><subject>Gate‐16</subject><subject>Gram-Negative Bacteria</subject><subject>Immune response</subject><subject>Immune system</subject><subject>infections/Interferons</subject><subject>Inflammasomes</subject><subject>Inflammasomes - genetics</subject><subject>Inflammation</subject><subject>Interferon</subject><subject>Intracellular</subject><subject>Irgm2</subject><subject>Life Sciences</subject><subject>Lipopolysaccharides</subject><subject>Macrophages</subject><subject>non‐canonical inflammasome</subject><subject>Phagocytosis</subject><subject>Proteins</subject><subject>Pyroptosis</subject><subject>Sepsis</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEoj-wZocisaGLaf3vmAVSqcq00iAkBBI7y7FvpqkSJ7WTQbPjEXhGngTPZBhKJcTK1r3fOffaJ8teYHSKOeHkDNoynBJEEEcFUY-yQ8yEmlEsi8e7OyH460F2FOMtQogrWTzNDijFhEmhDjNzHZYtyY13-dwM8PP7Dyxy23U9BDPUK2jWuTNtDz6fB9OmtofltpGXxg4QapNqtXejBZdbE3sTtyY4DxD7zkd4lj2pTBPh-e48zr68v_x8cTVbfJxfX5wvZlZQpWYVqiRzyFrGEZdVIQk4w0qnSgMGKSItlqCQohUmVUUwZVRyAoUxjDrrFD3O3k6-_Vi24Cz4IZhG96FuTVjrztT6746vb_SyW2kpGCdIJIOTyeDmgezqfKE3NUSUklyIFU7s692w0N2NEAfd1tFC0xgP3Rg1YVwwLDCnCX31AL3txuDTV2woWTBRiCJRZxNlQxdjgGq_AUZ6G7XeRK33USfFy_vv3fO_s03Amwn4Vjew_p-fvvzw7tN9dzSJY9L5JYQ_W_9roV-CwMl6</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Eren, Elif</creator><creator>Planès, Rémi</creator><creator>Bagayoko, Salimata</creator><creator>Bordignon, Pierre‐Jean</creator><creator>Chaoui, Karima</creator><creator>Hessel, Audrey</creator><creator>Santoni, Karin</creator><creator>Pinilla, Miriam</creator><creator>Lagrange, Brice</creator><creator>Burlet‐Schiltz, Odile</creator><creator>Howard, Jonathan C</creator><creator>Henry, Thomas</creator><creator>Yamamoto, Masahiro</creator><creator>Meunier, Etienne</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0687-8565</orcidid><orcidid>https://orcid.org/0000-0002-3651-4877</orcidid><orcidid>https://orcid.org/0000-0002-0956-4641</orcidid><orcidid>https://orcid.org/0000-0002-0328-5609</orcidid><orcidid>https://orcid.org/0000-0003-3695-3965</orcidid><orcidid>https://orcid.org/0000-0003-4317-7706</orcidid><orcidid>https://orcid.org/0000-0002-8612-3065</orcidid><orcidid>https://orcid.org/0000-0002-3489-4474</orcidid><orcidid>https://orcid.org/0000-0003-4073-8117</orcidid><orcidid>https://orcid.org/0000-0002-3606-2356</orcidid><orcidid>https://orcid.org/0000-0002-5688-9844</orcidid><orcidid>https://orcid.org/0000-0002-4131-5995</orcidid></search><sort><creationdate>20201105</creationdate><title>Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response</title><author>Eren, Elif ; Planès, Rémi ; Bagayoko, Salimata ; Bordignon, Pierre‐Jean ; Chaoui, Karima ; Hessel, Audrey ; Santoni, Karin ; Pinilla, Miriam ; Lagrange, Brice ; Burlet‐Schiltz, Odile ; Howard, Jonathan C ; Henry, Thomas ; Yamamoto, Masahiro ; Meunier, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal biology</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 8 Family</topic><topic>Bacteria</topic><topic>Caspase</topic><topic>Caspases - genetics</topic><topic>Caspases, Initiator</topic><topic>Caspase‐11</topic><topic>Cell activation</topic><topic>Cytokines</topic><topic>Cytosol</topic><topic>EMBO07</topic><topic>EMBO19</topic><topic>EMBO23</topic><topic>Endotoxemia</topic><topic>Gate‐16</topic><topic>Gram-Negative Bacteria</topic><topic>Immune response</topic><topic>Immune system</topic><topic>infections/Interferons</topic><topic>Inflammasomes</topic><topic>Inflammasomes - genetics</topic><topic>Inflammation</topic><topic>Interferon</topic><topic>Intracellular</topic><topic>Irgm2</topic><topic>Life Sciences</topic><topic>Lipopolysaccharides</topic><topic>Macrophages</topic><topic>non‐canonical inflammasome</topic><topic>Phagocytosis</topic><topic>Proteins</topic><topic>Pyroptosis</topic><topic>Sepsis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eren, Elif</creatorcontrib><creatorcontrib>Planès, Rémi</creatorcontrib><creatorcontrib>Bagayoko, Salimata</creatorcontrib><creatorcontrib>Bordignon, Pierre‐Jean</creatorcontrib><creatorcontrib>Chaoui, Karima</creatorcontrib><creatorcontrib>Hessel, Audrey</creatorcontrib><creatorcontrib>Santoni, Karin</creatorcontrib><creatorcontrib>Pinilla, Miriam</creatorcontrib><creatorcontrib>Lagrange, Brice</creatorcontrib><creatorcontrib>Burlet‐Schiltz, Odile</creatorcontrib><creatorcontrib>Howard, Jonathan C</creatorcontrib><creatorcontrib>Henry, Thomas</creatorcontrib><creatorcontrib>Yamamoto, Masahiro</creatorcontrib><creatorcontrib>Meunier, Etienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eren, Elif</au><au>Planès, Rémi</au><au>Bagayoko, Salimata</au><au>Bordignon, Pierre‐Jean</au><au>Chaoui, Karima</au><au>Hessel, Audrey</au><au>Santoni, Karin</au><au>Pinilla, Miriam</au><au>Lagrange, Brice</au><au>Burlet‐Schiltz, Odile</au><au>Howard, Jonathan C</au><au>Henry, Thomas</au><au>Yamamoto, Masahiro</au><au>Meunier, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>21</volume><issue>11</issue><spage>e50829</spage><epage>n/a</epage><pages>e50829-n/a</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo . Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Synopsis Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation. Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner. Irgm2 deficiency enhances endotoxemia susceptibility of mice. Graphical Abstract Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33124769</pmid><doi>10.15252/embr.202050829</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0687-8565</orcidid><orcidid>https://orcid.org/0000-0002-3651-4877</orcidid><orcidid>https://orcid.org/0000-0002-0956-4641</orcidid><orcidid>https://orcid.org/0000-0002-0328-5609</orcidid><orcidid>https://orcid.org/0000-0003-3695-3965</orcidid><orcidid>https://orcid.org/0000-0003-4317-7706</orcidid><orcidid>https://orcid.org/0000-0002-8612-3065</orcidid><orcidid>https://orcid.org/0000-0002-3489-4474</orcidid><orcidid>https://orcid.org/0000-0003-4073-8117</orcidid><orcidid>https://orcid.org/0000-0002-3606-2356</orcidid><orcidid>https://orcid.org/0000-0002-5688-9844</orcidid><orcidid>https://orcid.org/0000-0002-4131-5995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1469-221X
ispartof EMBO reports, 2020-11, Vol.21 (11), p.e50829-n/a
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645206
source Springer Nature OA Free Journals
subjects Animal biology
Autophagy
Autophagy-Related Protein 8 Family
Bacteria
Caspase
Caspases - genetics
Caspases, Initiator
Caspase‐11
Cell activation
Cytokines
Cytosol
EMBO07
EMBO19
EMBO23
Endotoxemia
Gate‐16
Gram-Negative Bacteria
Immune response
Immune system
infections/Interferons
Inflammasomes
Inflammasomes - genetics
Inflammation
Interferon
Intracellular
Irgm2
Life Sciences
Lipopolysaccharides
Macrophages
non‐canonical inflammasome
Phagocytosis
Proteins
Pyroptosis
Sepsis
title Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irgm2%20and%20Gate%E2%80%9016%20cooperatively%20dampen%20Gram%E2%80%90negative%20bacteria%E2%80%90induced%20caspase%E2%80%9011%20response&rft.jtitle=EMBO%20reports&rft.au=Eren,%20Elif&rft.date=2020-11-05&rft.volume=21&rft.issue=11&rft.spage=e50829&rft.epage=n/a&rft.pages=e50829-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202050829&rft_dat=%3Cproquest_C6C%3E2457846868%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457846868&rft_id=info:pmid/33124769&rfr_iscdi=true