Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke

•California has high variability in PM2.5 sources, meteorology and topography.•We used ensemble deep learning with multisource big data to improve PM2.5 estimates.•We reliably imputed missing satellite AOD and fused wildfire dispersion estimates.•Our model achieved high PM2.5 prediction performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environment international 2020-12, Vol.145, p.106143-106143, Article 106143
Hauptverfasser: Li, Lianfa, Girguis, Mariam, Lurmann, Frederick, Pavlovic, Nathan, McClure, Crystal, Franklin, Meredith, Wu, Jun, Oman, Luke D., Breton, Carrie, Gilliland, Frank, Habre, Rima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106143
container_issue
container_start_page 106143
container_title Environment international
container_volume 145
creator Li, Lianfa
Girguis, Mariam
Lurmann, Frederick
Pavlovic, Nathan
McClure, Crystal
Franklin, Meredith
Wu, Jun
Oman, Luke D.
Breton, Carrie
Gilliland, Frank
Habre, Rima
description •California has high variability in PM2.5 sources, meteorology and topography.•We used ensemble deep learning with multisource big data to improve PM2.5 estimates.•We reliably imputed missing satellite AOD and fused wildfire dispersion estimates.•Our model achieved high PM2.5 prediction performance with uncertainty estimates. Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use. Using ensemble-based deep learning with big data fused from multiple sources we developed a PM2.5 prediction model with uncertainty estimates at a high spatial (1 km × 1 km) and temporal (weekly) resolution for a 10-year time span (2008–2017). We leveraged autoencoder-based full residual deep networks to model complex nonlinear interrelationships among PM2.5 emission, transport and dispersion factors and other influential features. These included remote sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, temporal basis functions, time index). As one of the primary predictors of interest with substantial missing data in California related to bright surfaces, cloud cover and other known interferences, missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical distribution. Wildfire smoke contribution to PM2.5 was also calculated through HYSPLIT dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire Energetics and Emissions Research version 1.0 model. Ensemble deep learning to predict PM2.5 achieved an overall mean training RMSE of 1.54 μg/m3 (R2: 0.94) and test RMSE of 2.29 μg/m3 (R2: 0.87). The top predictors included M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial location, air temperature, MAIAC AOD, and PM2.5 sea salt mass concentration. In an independent test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high correlation (>0.8) and a low RMSE (
doi_str_mv 10.1016/j.envint.2020.106143
format Article
fullrecord <record><control><sourceid>nasa_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7643812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0160412020320985</els_id><doaj_id>oai_doaj_org_article_10b913da1bb64b33ac9ad378ab75942c</doaj_id><sourcerecordid>20205008643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-b7ee9fdbc9a04b7383aa30b78c708f93d79d2f49b0085bf2192f014dfbc4adcd3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEokvhDXrwC2Txv8TJBQmtClQqggOcrbE92XpJnJXt3apvj7OpkHrhZHk-f7_xzFdVN4xuGWXtx8MWw9mHvOWUL6WWSfGq2rBOibpVDX1dbcozWkvG6VX1LqUDpZTLrnlbXQned1SJdlPl25BwMiPWBhI64hCPZESIwYc9GeZIMGU_QV6uP7_zbUPmM0ayg9EXNXggjz4_kOk0Zp_mU7RIjN8TBxmID3Y8ucX56Ec3-IgkTfMffF-9GWBM-OH5vK5-f7n9tftW3__4erf7fF_bhqtcG4XYD87YHqg0SnQCQFCjOqtoN_TCqd7xQfaG0q4xA2c9HyiTbjBWgrNOXFd3K9fNcNDHWOaIT3oGry-FOe41xOztiJpR0zPhgBnTSiMElKZOqA6ManrJbWF9WlnHk5nQWQw5wvgC-lIJ_kHv57NWrRQd4wUgV4CNc0oRh39eRvWSqD7oNVG9JKrXRIvtZrUFSKALOl3kpszcXuTnb2HZ49lj1Ml6DBZd2bbNZVD_f_5f5c216w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke</title><source>Directory of Open Access Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>NASA Technical Reports Server</source><source>EZB Electronic Journals Library</source><creator>Li, Lianfa ; Girguis, Mariam ; Lurmann, Frederick ; Pavlovic, Nathan ; McClure, Crystal ; Franklin, Meredith ; Wu, Jun ; Oman, Luke D. ; Breton, Carrie ; Gilliland, Frank ; Habre, Rima</creator><creatorcontrib>Li, Lianfa ; Girguis, Mariam ; Lurmann, Frederick ; Pavlovic, Nathan ; McClure, Crystal ; Franklin, Meredith ; Wu, Jun ; Oman, Luke D. ; Breton, Carrie ; Gilliland, Frank ; Habre, Rima</creatorcontrib><description>•California has high variability in PM2.5 sources, meteorology and topography.•We used ensemble deep learning with multisource big data to improve PM2.5 estimates.•We reliably imputed missing satellite AOD and fused wildfire dispersion estimates.•Our model achieved high PM2.5 prediction performance with uncertainty estimates. Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use. Using ensemble-based deep learning with big data fused from multiple sources we developed a PM2.5 prediction model with uncertainty estimates at a high spatial (1 km × 1 km) and temporal (weekly) resolution for a 10-year time span (2008–2017). We leveraged autoencoder-based full residual deep networks to model complex nonlinear interrelationships among PM2.5 emission, transport and dispersion factors and other influential features. These included remote sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, temporal basis functions, time index). As one of the primary predictors of interest with substantial missing data in California related to bright surfaces, cloud cover and other known interferences, missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical distribution. Wildfire smoke contribution to PM2.5 was also calculated through HYSPLIT dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire Energetics and Emissions Research version 1.0 model. Ensemble deep learning to predict PM2.5 achieved an overall mean training RMSE of 1.54 μg/m3 (R2: 0.94) and test RMSE of 2.29 μg/m3 (R2: 0.87). The top predictors included M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial location, air temperature, MAIAC AOD, and PM2.5 sea salt mass concentration. In an independent test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high correlation (&gt;0.8) and a low RMSE (&lt;3 μg/m3). Statewide predictions indicated that our model can capture the spatial distribution and temporal peaks in wildfire-related PM2.5. The coefficient of variation indicated highest uncertainty over deciduous and mixed forests and open water land covers. Our method can be generalized to other regions, including those having a mix of major urban areas, deserts, intensive smoke events, snow cover and complex terrains, where PM2.5 has previously been challenging to predict. Prediction uncertainty estimates can also inform further model development and measurement error evaluations in exposure and health studies.</description><identifier>ISSN: 0160-4120</identifier><identifier>EISSN: 1873-6750</identifier><identifier>DOI: 10.1016/j.envint.2020.106143</identifier><identifier>PMID: 32980736</identifier><language>eng</language><publisher>Goddard Space Flight Center: Elsevier Ltd</publisher><subject>Air pollution exposure ; California ; Computer Programming And Software ; Earth Resources And Remote Sensing ; Environment Pollution ; Geosciences (General) ; High spatiotemporal resolution ; Machine learning ; PM2.5 ; Remote sensing ; Wildfires</subject><ispartof>Environment international, 2020-12, Vol.145, p.106143-106143, Article 106143</ispartof><rights>2020 The Author(s)</rights><rights>Copyright Determination: GOV_PERMITTED</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-b7ee9fdbc9a04b7383aa30b78c708f93d79d2f49b0085bf2192f014dfbc4adcd3</citedby><cites>FETCH-LOGICAL-c527t-b7ee9fdbc9a04b7383aa30b78c708f93d79d2f49b0085bf2192f014dfbc4adcd3</cites><orcidid>0000-0003-2127-3940 ; 0000-0003-2103-1706 ; 0000-0002-2693-7112 ; 0000-0001-7477-5528 ; 0000-0002-5487-2598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envint.2020.106143$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,801,865,886,2103,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Li, Lianfa</creatorcontrib><creatorcontrib>Girguis, Mariam</creatorcontrib><creatorcontrib>Lurmann, Frederick</creatorcontrib><creatorcontrib>Pavlovic, Nathan</creatorcontrib><creatorcontrib>McClure, Crystal</creatorcontrib><creatorcontrib>Franklin, Meredith</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Oman, Luke D.</creatorcontrib><creatorcontrib>Breton, Carrie</creatorcontrib><creatorcontrib>Gilliland, Frank</creatorcontrib><creatorcontrib>Habre, Rima</creatorcontrib><title>Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke</title><title>Environment international</title><description>•California has high variability in PM2.5 sources, meteorology and topography.•We used ensemble deep learning with multisource big data to improve PM2.5 estimates.•We reliably imputed missing satellite AOD and fused wildfire dispersion estimates.•Our model achieved high PM2.5 prediction performance with uncertainty estimates. Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use. Using ensemble-based deep learning with big data fused from multiple sources we developed a PM2.5 prediction model with uncertainty estimates at a high spatial (1 km × 1 km) and temporal (weekly) resolution for a 10-year time span (2008–2017). We leveraged autoencoder-based full residual deep networks to model complex nonlinear interrelationships among PM2.5 emission, transport and dispersion factors and other influential features. These included remote sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, temporal basis functions, time index). As one of the primary predictors of interest with substantial missing data in California related to bright surfaces, cloud cover and other known interferences, missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical distribution. Wildfire smoke contribution to PM2.5 was also calculated through HYSPLIT dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire Energetics and Emissions Research version 1.0 model. Ensemble deep learning to predict PM2.5 achieved an overall mean training RMSE of 1.54 μg/m3 (R2: 0.94) and test RMSE of 2.29 μg/m3 (R2: 0.87). The top predictors included M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial location, air temperature, MAIAC AOD, and PM2.5 sea salt mass concentration. In an independent test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high correlation (&gt;0.8) and a low RMSE (&lt;3 μg/m3). Statewide predictions indicated that our model can capture the spatial distribution and temporal peaks in wildfire-related PM2.5. The coefficient of variation indicated highest uncertainty over deciduous and mixed forests and open water land covers. Our method can be generalized to other regions, including those having a mix of major urban areas, deserts, intensive smoke events, snow cover and complex terrains, where PM2.5 has previously been challenging to predict. Prediction uncertainty estimates can also inform further model development and measurement error evaluations in exposure and health studies.</description><subject>Air pollution exposure</subject><subject>California</subject><subject>Computer Programming And Software</subject><subject>Earth Resources And Remote Sensing</subject><subject>Environment Pollution</subject><subject>Geosciences (General)</subject><subject>High spatiotemporal resolution</subject><subject>Machine learning</subject><subject>PM2.5</subject><subject>Remote sensing</subject><subject>Wildfires</subject><issn>0160-4120</issn><issn>1873-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc9u1DAQxiMEokvhDXrwC2Txv8TJBQmtClQqggOcrbE92XpJnJXt3apvj7OpkHrhZHk-f7_xzFdVN4xuGWXtx8MWw9mHvOWUL6WWSfGq2rBOibpVDX1dbcozWkvG6VX1LqUDpZTLrnlbXQned1SJdlPl25BwMiPWBhI64hCPZESIwYc9GeZIMGU_QV6uP7_zbUPmM0ayg9EXNXggjz4_kOk0Zp_mU7RIjN8TBxmID3Y8ucX56Ec3-IgkTfMffF-9GWBM-OH5vK5-f7n9tftW3__4erf7fF_bhqtcG4XYD87YHqg0SnQCQFCjOqtoN_TCqd7xQfaG0q4xA2c9HyiTbjBWgrNOXFd3K9fNcNDHWOaIT3oGry-FOe41xOztiJpR0zPhgBnTSiMElKZOqA6ManrJbWF9WlnHk5nQWQw5wvgC-lIJ_kHv57NWrRQd4wUgV4CNc0oRh39eRvWSqD7oNVG9JKrXRIvtZrUFSKALOl3kpszcXuTnb2HZ49lj1Ml6DBZd2bbNZVD_f_5f5c216w</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Li, Lianfa</creator><creator>Girguis, Mariam</creator><creator>Lurmann, Frederick</creator><creator>Pavlovic, Nathan</creator><creator>McClure, Crystal</creator><creator>Franklin, Meredith</creator><creator>Wu, Jun</creator><creator>Oman, Luke D.</creator><creator>Breton, Carrie</creator><creator>Gilliland, Frank</creator><creator>Habre, Rima</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2127-3940</orcidid><orcidid>https://orcid.org/0000-0003-2103-1706</orcidid><orcidid>https://orcid.org/0000-0002-2693-7112</orcidid><orcidid>https://orcid.org/0000-0001-7477-5528</orcidid><orcidid>https://orcid.org/0000-0002-5487-2598</orcidid></search><sort><creationdate>20201201</creationdate><title>Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke</title><author>Li, Lianfa ; Girguis, Mariam ; Lurmann, Frederick ; Pavlovic, Nathan ; McClure, Crystal ; Franklin, Meredith ; Wu, Jun ; Oman, Luke D. ; Breton, Carrie ; Gilliland, Frank ; Habre, Rima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-b7ee9fdbc9a04b7383aa30b78c708f93d79d2f49b0085bf2192f014dfbc4adcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air pollution exposure</topic><topic>California</topic><topic>Computer Programming And Software</topic><topic>Earth Resources And Remote Sensing</topic><topic>Environment Pollution</topic><topic>Geosciences (General)</topic><topic>High spatiotemporal resolution</topic><topic>Machine learning</topic><topic>PM2.5</topic><topic>Remote sensing</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lianfa</creatorcontrib><creatorcontrib>Girguis, Mariam</creatorcontrib><creatorcontrib>Lurmann, Frederick</creatorcontrib><creatorcontrib>Pavlovic, Nathan</creatorcontrib><creatorcontrib>McClure, Crystal</creatorcontrib><creatorcontrib>Franklin, Meredith</creatorcontrib><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Oman, Luke D.</creatorcontrib><creatorcontrib>Breton, Carrie</creatorcontrib><creatorcontrib>Gilliland, Frank</creatorcontrib><creatorcontrib>Habre, Rima</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Environment international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lianfa</au><au>Girguis, Mariam</au><au>Lurmann, Frederick</au><au>Pavlovic, Nathan</au><au>McClure, Crystal</au><au>Franklin, Meredith</au><au>Wu, Jun</au><au>Oman, Luke D.</au><au>Breton, Carrie</au><au>Gilliland, Frank</au><au>Habre, Rima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke</atitle><jtitle>Environment international</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>145</volume><spage>106143</spage><epage>106143</epage><pages>106143-106143</pages><artnum>106143</artnum><issn>0160-4120</issn><eissn>1873-6750</eissn><abstract>•California has high variability in PM2.5 sources, meteorology and topography.•We used ensemble deep learning with multisource big data to improve PM2.5 estimates.•We reliably imputed missing satellite AOD and fused wildfire dispersion estimates.•Our model achieved high PM2.5 prediction performance with uncertainty estimates. Estimating PM2.5 concentrations and their prediction uncertainties at a high spatiotemporal resolution is important for air pollution health effect studies. This is particularly challenging for California, which has high variability in natural (e.g, wildfires, dust) and anthropogenic emissions, meteorology, topography (e.g. desert surfaces, mountains, snow cover) and land use. Using ensemble-based deep learning with big data fused from multiple sources we developed a PM2.5 prediction model with uncertainty estimates at a high spatial (1 km × 1 km) and temporal (weekly) resolution for a 10-year time span (2008–2017). We leveraged autoencoder-based full residual deep networks to model complex nonlinear interrelationships among PM2.5 emission, transport and dispersion factors and other influential features. These included remote sensing data (MAIAC aerosol optical depth (AOD), normalized difference vegetation index, impervious surface), MERRA-2 GMI Replay Simulation (M2GMI) output, wildfire smoke plume dispersion, meteorology, land cover, traffic, elevation, and spatiotemporal trends (geo-coordinates, temporal basis functions, time index). As one of the primary predictors of interest with substantial missing data in California related to bright surfaces, cloud cover and other known interferences, missing MAIAC AOD observations were imputed and adjusted for relative humidity and vertical distribution. Wildfire smoke contribution to PM2.5 was also calculated through HYSPLIT dispersion modeling of smoke emissions derived from MODIS fire radiative power using the Fire Energetics and Emissions Research version 1.0 model. Ensemble deep learning to predict PM2.5 achieved an overall mean training RMSE of 1.54 μg/m3 (R2: 0.94) and test RMSE of 2.29 μg/m3 (R2: 0.87). The top predictors included M2GMI carbon monoxide mixing ratio in the bottom layer, temporal basis functions, spatial location, air temperature, MAIAC AOD, and PM2.5 sea salt mass concentration. In an independent test using three long-term AQS sites and one short-term non-AQS site, our model achieved a high correlation (&gt;0.8) and a low RMSE (&lt;3 μg/m3). Statewide predictions indicated that our model can capture the spatial distribution and temporal peaks in wildfire-related PM2.5. The coefficient of variation indicated highest uncertainty over deciduous and mixed forests and open water land covers. Our method can be generalized to other regions, including those having a mix of major urban areas, deserts, intensive smoke events, snow cover and complex terrains, where PM2.5 has previously been challenging to predict. Prediction uncertainty estimates can also inform further model development and measurement error evaluations in exposure and health studies.</abstract><cop>Goddard Space Flight Center</cop><pub>Elsevier Ltd</pub><pmid>32980736</pmid><doi>10.1016/j.envint.2020.106143</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2127-3940</orcidid><orcidid>https://orcid.org/0000-0003-2103-1706</orcidid><orcidid>https://orcid.org/0000-0002-2693-7112</orcidid><orcidid>https://orcid.org/0000-0001-7477-5528</orcidid><orcidid>https://orcid.org/0000-0002-5487-2598</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0160-4120
ispartof Environment international, 2020-12, Vol.145, p.106143-106143, Article 106143
issn 0160-4120
1873-6750
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7643812
source Directory of Open Access Journals; Access via ScienceDirect (Elsevier); NASA Technical Reports Server; EZB Electronic Journals Library
subjects Air pollution exposure
California
Computer Programming And Software
Earth Resources And Remote Sensing
Environment Pollution
Geosciences (General)
High spatiotemporal resolution
Machine learning
PM2.5
Remote sensing
Wildfires
title Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble-based%20deep%20learning%20for%20estimating%20PM2.5%20over%20California%20with%20multisource%20big%20data%20including%20wildfire%20smoke&rft.jtitle=Environment%20international&rft.au=Li,%20Lianfa&rft.date=2020-12-01&rft.volume=145&rft.spage=106143&rft.epage=106143&rft.pages=106143-106143&rft.artnum=106143&rft.issn=0160-4120&rft.eissn=1873-6750&rft_id=info:doi/10.1016/j.envint.2020.106143&rft_dat=%3Cnasa_doaj_%3E20205008643%3C/nasa_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32980736&rft_els_id=S0160412020320985&rft_doaj_id=oai_doaj_org_article_10b913da1bb64b33ac9ad378ab75942c&rfr_iscdi=true