3D rainbow phononic crystals for extended vibration attenuation bands

We hereby report for the first time on the design, manufacturing and testing of a three-dimensional (3D) nearly-periodic, locally resonant phononic crystal (PnC). Most of the research effort on PnCs and metamaterials has been focused on the enhanced dynamic properties arising from their periodic des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-11, Vol.10 (1), p.18989-18989, Article 18989
Hauptverfasser: Meng, H., Bailey, N., Chen, Y., Wang, L., Ciampa, F., Fabro, A., Chronopoulos, D., Elmadih, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18989
container_issue 1
container_start_page 18989
container_title Scientific reports
container_volume 10
creator Meng, H.
Bailey, N.
Chen, Y.
Wang, L.
Ciampa, F.
Fabro, A.
Chronopoulos, D.
Elmadih, W.
description We hereby report for the first time on the design, manufacturing and testing of a three-dimensional (3D) nearly-periodic, locally resonant phononic crystal (PnC). Most of the research effort on PnCs and metamaterials has been focused on the enhanced dynamic properties arising from their periodic design. Lately, additive manufacturing techniques have made a number of designs with intrinsically complex geometries feasible to produce. These recent developments have led to innovative solutions for broadband vibration attenuation, with a multitude of potential engineering applications. The recently introduced concept of rainbow metamaterials and PnCs has shown a significant potential for further expanding the spectrum of vibration attenuation in such structures by introducing a gradient profile for the considered unit cells. Given the above, it is expected that designing non-periodic PnCs will attract significant attention from scientists and engineers in the years to come. The proposed nearly-periodic design is based on cuboid blocks connected by curved beams, with internal voids in the blocks being implemented to adjust the local masses and generate a 3D rainbow PnC. Results show that the proposed approach can produce lightweight PnCs of a simple, manufacturable design exhibiting attenuation bandwidths more than two times larger than the equivalent periodic designs of equal mass.
doi_str_mv 10.1038/s41598-020-75977-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7643112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457970093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-43054d93aa1ba1912da62008e1f7ec3b2b6b0e3d21ee2008c0d98fa3f542fdc23</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoVmr_gKsBN25G85yZbASp9QEFN7oOmSTTprRJTWaq_femTvG1MJtc7v3O4V4OAGcIXiJIqqtIEeNVDjHMS8bLMq8OwAmGlOWYYHz4ox6AUYwLmB7DnCJ-DAaEIMoxhSdgQm6zIK2r_Vu2nnvnnVWZCtvYymXMGh8y894ap43ONrYOsrXeZbJNra6va-l0PAVHTeLNaP8Pwcvd5Hn8kE-f7h_HN9NcUYbanBLIqOZESlRLxBHWssAQVgY1pVGkxnVRQ0M0Rsbs-gpqXjWSNIziRitMhuC691139cpoZVwb5FKsg13JsBVeWvF74uxczPxGlAUlCO0MLvYGwb92JrZiZaMyy6V0xndRYMpKXkLISULP_6AL3wWXzktUiRipcFEkCveUCj7GYJqvZRAUu6BEH5RIQYnPoESVRKQXxQS7mQnf1v-oPgCHTpUD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471538266</pqid></control><display><type>article</type><title>3D rainbow phononic crystals for extended vibration attenuation bands</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Meng, H. ; Bailey, N. ; Chen, Y. ; Wang, L. ; Ciampa, F. ; Fabro, A. ; Chronopoulos, D. ; Elmadih, W.</creator><creatorcontrib>Meng, H. ; Bailey, N. ; Chen, Y. ; Wang, L. ; Ciampa, F. ; Fabro, A. ; Chronopoulos, D. ; Elmadih, W.</creatorcontrib><description>We hereby report for the first time on the design, manufacturing and testing of a three-dimensional (3D) nearly-periodic, locally resonant phononic crystal (PnC). Most of the research effort on PnCs and metamaterials has been focused on the enhanced dynamic properties arising from their periodic design. Lately, additive manufacturing techniques have made a number of designs with intrinsically complex geometries feasible to produce. These recent developments have led to innovative solutions for broadband vibration attenuation, with a multitude of potential engineering applications. The recently introduced concept of rainbow metamaterials and PnCs has shown a significant potential for further expanding the spectrum of vibration attenuation in such structures by introducing a gradient profile for the considered unit cells. Given the above, it is expected that designing non-periodic PnCs will attract significant attention from scientists and engineers in the years to come. The proposed nearly-periodic design is based on cuboid blocks connected by curved beams, with internal voids in the blocks being implemented to adjust the local masses and generate a 3D rainbow PnC. Results show that the proposed approach can produce lightweight PnCs of a simple, manufacturable design exhibiting attenuation bandwidths more than two times larger than the equivalent periodic designs of equal mass.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-75977-8</identifier><identifier>PMID: 33149240</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/988 ; 639/301/1023/303 ; 639/766/25 ; Crystals ; Design ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary) ; Vibration</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.18989-18989, Article 18989</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-43054d93aa1ba1912da62008e1f7ec3b2b6b0e3d21ee2008c0d98fa3f542fdc23</citedby><cites>FETCH-LOGICAL-c451t-43054d93aa1ba1912da62008e1f7ec3b2b6b0e3d21ee2008c0d98fa3f542fdc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643112/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643112/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids></links><search><creatorcontrib>Meng, H.</creatorcontrib><creatorcontrib>Bailey, N.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Ciampa, F.</creatorcontrib><creatorcontrib>Fabro, A.</creatorcontrib><creatorcontrib>Chronopoulos, D.</creatorcontrib><creatorcontrib>Elmadih, W.</creatorcontrib><title>3D rainbow phononic crystals for extended vibration attenuation bands</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>We hereby report for the first time on the design, manufacturing and testing of a three-dimensional (3D) nearly-periodic, locally resonant phononic crystal (PnC). Most of the research effort on PnCs and metamaterials has been focused on the enhanced dynamic properties arising from their periodic design. Lately, additive manufacturing techniques have made a number of designs with intrinsically complex geometries feasible to produce. These recent developments have led to innovative solutions for broadband vibration attenuation, with a multitude of potential engineering applications. The recently introduced concept of rainbow metamaterials and PnCs has shown a significant potential for further expanding the spectrum of vibration attenuation in such structures by introducing a gradient profile for the considered unit cells. Given the above, it is expected that designing non-periodic PnCs will attract significant attention from scientists and engineers in the years to come. The proposed nearly-periodic design is based on cuboid blocks connected by curved beams, with internal voids in the blocks being implemented to adjust the local masses and generate a 3D rainbow PnC. Results show that the proposed approach can produce lightweight PnCs of a simple, manufacturable design exhibiting attenuation bandwidths more than two times larger than the equivalent periodic designs of equal mass.</description><subject>639/166/988</subject><subject>639/301/1023/303</subject><subject>639/766/25</subject><subject>Crystals</subject><subject>Design</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Vibration</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMoVmr_gKsBN25G85yZbASp9QEFN7oOmSTTprRJTWaq_femTvG1MJtc7v3O4V4OAGcIXiJIqqtIEeNVDjHMS8bLMq8OwAmGlOWYYHz4ox6AUYwLmB7DnCJ-DAaEIMoxhSdgQm6zIK2r_Vu2nnvnnVWZCtvYymXMGh8y894ap43ONrYOsrXeZbJNra6va-l0PAVHTeLNaP8Pwcvd5Hn8kE-f7h_HN9NcUYbanBLIqOZESlRLxBHWssAQVgY1pVGkxnVRQ0M0Rsbs-gpqXjWSNIziRitMhuC691139cpoZVwb5FKsg13JsBVeWvF74uxczPxGlAUlCO0MLvYGwb92JrZiZaMyy6V0xndRYMpKXkLISULP_6AL3wWXzktUiRipcFEkCveUCj7GYJqvZRAUu6BEH5RIQYnPoESVRKQXxQS7mQnf1v-oPgCHTpUD</recordid><startdate>20201104</startdate><enddate>20201104</enddate><creator>Meng, H.</creator><creator>Bailey, N.</creator><creator>Chen, Y.</creator><creator>Wang, L.</creator><creator>Ciampa, F.</creator><creator>Fabro, A.</creator><creator>Chronopoulos, D.</creator><creator>Elmadih, W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201104</creationdate><title>3D rainbow phononic crystals for extended vibration attenuation bands</title><author>Meng, H. ; Bailey, N. ; Chen, Y. ; Wang, L. ; Ciampa, F. ; Fabro, A. ; Chronopoulos, D. ; Elmadih, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-43054d93aa1ba1912da62008e1f7ec3b2b6b0e3d21ee2008c0d98fa3f542fdc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166/988</topic><topic>639/301/1023/303</topic><topic>639/766/25</topic><topic>Crystals</topic><topic>Design</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, H.</creatorcontrib><creatorcontrib>Bailey, N.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Ciampa, F.</creatorcontrib><creatorcontrib>Fabro, A.</creatorcontrib><creatorcontrib>Chronopoulos, D.</creatorcontrib><creatorcontrib>Elmadih, W.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, H.</au><au>Bailey, N.</au><au>Chen, Y.</au><au>Wang, L.</au><au>Ciampa, F.</au><au>Fabro, A.</au><au>Chronopoulos, D.</au><au>Elmadih, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D rainbow phononic crystals for extended vibration attenuation bands</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-11-04</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>18989</spage><epage>18989</epage><pages>18989-18989</pages><artnum>18989</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We hereby report for the first time on the design, manufacturing and testing of a three-dimensional (3D) nearly-periodic, locally resonant phononic crystal (PnC). Most of the research effort on PnCs and metamaterials has been focused on the enhanced dynamic properties arising from their periodic design. Lately, additive manufacturing techniques have made a number of designs with intrinsically complex geometries feasible to produce. These recent developments have led to innovative solutions for broadband vibration attenuation, with a multitude of potential engineering applications. The recently introduced concept of rainbow metamaterials and PnCs has shown a significant potential for further expanding the spectrum of vibration attenuation in such structures by introducing a gradient profile for the considered unit cells. Given the above, it is expected that designing non-periodic PnCs will attract significant attention from scientists and engineers in the years to come. The proposed nearly-periodic design is based on cuboid blocks connected by curved beams, with internal voids in the blocks being implemented to adjust the local masses and generate a 3D rainbow PnC. Results show that the proposed approach can produce lightweight PnCs of a simple, manufacturable design exhibiting attenuation bandwidths more than two times larger than the equivalent periodic designs of equal mass.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33149240</pmid><doi>10.1038/s41598-020-75977-8</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-11, Vol.10 (1), p.18989-18989, Article 18989
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7643112
source Nature Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 639/166/988
639/301/1023/303
639/766/25
Crystals
Design
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Vibration
title 3D rainbow phononic crystals for extended vibration attenuation bands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20rainbow%20phononic%20crystals%20for%20extended%20vibration%20attenuation%20bands&rft.jtitle=Scientific%20reports&rft.au=Meng,%20H.&rft.date=2020-11-04&rft.volume=10&rft.issue=1&rft.spage=18989&rft.epage=18989&rft.pages=18989-18989&rft.artnum=18989&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-75977-8&rft_dat=%3Cproquest_pubme%3E2457970093%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471538266&rft_id=info:pmid/33149240&rfr_iscdi=true