Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats

Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-11, Vol.10 (1), p.18981, Article 18981
Hauptverfasser: Wróbel, Jacek, Średniawa, Władysław, Jurkiewicz, Gabriela, Żygierewicz, Jarosław, Wójcik, Daniel K., Whittington, Miles Adrian, Hunt, Mark Jeremy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 18981
container_title Scientific reports
container_volume 10
creator Wróbel, Jacek
Średniawa, Władysław
Jurkiewicz, Gabriela
Żygierewicz, Jarosław
Wójcik, Daniel K.
Whittington, Miles Adrian
Hunt, Mark Jeremy
description Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked “fast” theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to “fast” theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side. Bilateral nares blockade reduced ketamine-induced hyperactivity and HFO power and frequency. These findings suggest that nasal airflow entrains ketamine-dependent HFO in diverse brain regions, and that the OB plays an important role in the broadcast of this rhythm.
doi_str_mv 10.1038/s41598-020-75641-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471538156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4dd2d886e16f5186f3a425b796fa387aac247850e5947730ac34386f7438973c3</originalsourceid><addsrcrecordid>eNp9UctOGzEUtaqigiA_wKKyxHpaP8czm0oVKqUSajewthzPnYwhsaf2JCgbvp0LoSls8MK2dM89Dx1CTjn7wplsvhbFddtUTLDK6Frxin8gR4IpXQkpxMdX_0MyK-WW4dGiVbz9RA6l5KoVTByRh9-uuCXNUMaQ3RRSpKHQCB5KcXlL-5TpHUxuFSJUHYwQO4gTHcJioH2Gv2uIfov46T7lO5qKD8vlM02hLnZ0DoPbhJRRYtiOkJ2fwiZMWxoiRblyQg56tywwe3mPyc3Fj-vzy-rqz89f59-vKq-MmirVdaJrmhp43Wve1L10Sui5aeveycY454UyjWagW2WMZM5LJRFm8G6N9PKYfNvxjuv5CjqPGdCTHXNYYUqbXLBvJzEMdpE21tRKKCWQ4OyFICcMXSZ7m9Y5omeL0lzLhusaUWKH8jmVkqHfK3Bmn2qzu9os1mafa7Mclz6_9rZf-VcSAuQOUHAUF5D_a79D-wgDEaYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471538156</pqid></control><display><type>article</type><title>Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats</title><source>Nature Journals Open Access</source><source>Open Access: PubMed Central</source><source>SpringerOpen</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Wróbel, Jacek ; Średniawa, Władysław ; Jurkiewicz, Gabriela ; Żygierewicz, Jarosław ; Wójcik, Daniel K. ; Whittington, Miles Adrian ; Hunt, Mark Jeremy</creator><creatorcontrib>Wróbel, Jacek ; Średniawa, Władysław ; Jurkiewicz, Gabriela ; Żygierewicz, Jarosław ; Wójcik, Daniel K. ; Whittington, Miles Adrian ; Hunt, Mark Jeremy</creatorcontrib><description>Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked “fast” theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to “fast” theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side. Bilateral nares blockade reduced ketamine-induced hyperactivity and HFO power and frequency. These findings suggest that nasal airflow entrains ketamine-dependent HFO in diverse brain regions, and that the OB plays an important role in the broadcast of this rhythm.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-75641-1</identifier><identifier>PMID: 33149202</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 631/443 ; Air flow ; Animals ; Behavior, Animal - drug effects ; Excitatory Amino Acid Antagonists - administration &amp; dosage ; Excitatory Amino Acid Antagonists - pharmacology ; Haloperidol ; Haloperidol - adverse effects ; Humanities and Social Sciences ; Hyperactivity ; Ketamine ; Ketamine - administration &amp; dosage ; Ketamine - pharmacology ; Locomotor activity ; Male ; Motor Activity - drug effects ; multidisciplinary ; Neostriatum ; Nose - drug effects ; Nose - physiology ; Oscillations ; Prefrontal cortex ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - physiology ; Rats ; Rats, Wistar ; Respiration ; Respiration - drug effects ; Science ; Science (multidisciplinary) ; Theta Rhythm - drug effects ; Theta rhythms ; Ventral Striatum - drug effects ; Ventral Striatum - physiology</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.18981, Article 18981</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4dd2d886e16f5186f3a425b796fa387aac247850e5947730ac34386f7438973c3</citedby><cites>FETCH-LOGICAL-c474t-4dd2d886e16f5186f3a425b796fa387aac247850e5947730ac34386f7438973c3</cites><orcidid>0000-0002-3152-4785 ; 0000-0002-0247-1362 ; 0000-0002-7536-0735 ; 0000-0001-5500-973X ; 0000-0001-7741-2191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642442/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642442/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33149202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wróbel, Jacek</creatorcontrib><creatorcontrib>Średniawa, Władysław</creatorcontrib><creatorcontrib>Jurkiewicz, Gabriela</creatorcontrib><creatorcontrib>Żygierewicz, Jarosław</creatorcontrib><creatorcontrib>Wójcik, Daniel K.</creatorcontrib><creatorcontrib>Whittington, Miles Adrian</creatorcontrib><creatorcontrib>Hunt, Mark Jeremy</creatorcontrib><title>Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked “fast” theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to “fast” theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side. Bilateral nares blockade reduced ketamine-induced hyperactivity and HFO power and frequency. These findings suggest that nasal airflow entrains ketamine-dependent HFO in diverse brain regions, and that the OB plays an important role in the broadcast of this rhythm.</description><subject>631/378</subject><subject>631/443</subject><subject>Air flow</subject><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Excitatory Amino Acid Antagonists - administration &amp; dosage</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Haloperidol</subject><subject>Haloperidol - adverse effects</subject><subject>Humanities and Social Sciences</subject><subject>Hyperactivity</subject><subject>Ketamine</subject><subject>Ketamine - administration &amp; dosage</subject><subject>Ketamine - pharmacology</subject><subject>Locomotor activity</subject><subject>Male</subject><subject>Motor Activity - drug effects</subject><subject>multidisciplinary</subject><subject>Neostriatum</subject><subject>Nose - drug effects</subject><subject>Nose - physiology</subject><subject>Oscillations</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Respiration</subject><subject>Respiration - drug effects</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Theta Rhythm - drug effects</subject><subject>Theta rhythms</subject><subject>Ventral Striatum - drug effects</subject><subject>Ventral Striatum - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctOGzEUtaqigiA_wKKyxHpaP8czm0oVKqUSajewthzPnYwhsaf2JCgbvp0LoSls8MK2dM89Dx1CTjn7wplsvhbFddtUTLDK6Frxin8gR4IpXQkpxMdX_0MyK-WW4dGiVbz9RA6l5KoVTByRh9-uuCXNUMaQ3RRSpKHQCB5KcXlL-5TpHUxuFSJUHYwQO4gTHcJioH2Gv2uIfov46T7lO5qKD8vlM02hLnZ0DoPbhJRRYtiOkJ2fwiZMWxoiRblyQg56tywwe3mPyc3Fj-vzy-rqz89f59-vKq-MmirVdaJrmhp43Wve1L10Sui5aeveycY454UyjWagW2WMZM5LJRFm8G6N9PKYfNvxjuv5CjqPGdCTHXNYYUqbXLBvJzEMdpE21tRKKCWQ4OyFICcMXSZ7m9Y5omeL0lzLhusaUWKH8jmVkqHfK3Bmn2qzu9os1mafa7Mclz6_9rZf-VcSAuQOUHAUF5D_a79D-wgDEaYU</recordid><startdate>20201104</startdate><enddate>20201104</enddate><creator>Wróbel, Jacek</creator><creator>Średniawa, Władysław</creator><creator>Jurkiewicz, Gabriela</creator><creator>Żygierewicz, Jarosław</creator><creator>Wójcik, Daniel K.</creator><creator>Whittington, Miles Adrian</creator><creator>Hunt, Mark Jeremy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3152-4785</orcidid><orcidid>https://orcid.org/0000-0002-0247-1362</orcidid><orcidid>https://orcid.org/0000-0002-7536-0735</orcidid><orcidid>https://orcid.org/0000-0001-5500-973X</orcidid><orcidid>https://orcid.org/0000-0001-7741-2191</orcidid></search><sort><creationdate>20201104</creationdate><title>Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats</title><author>Wróbel, Jacek ; Średniawa, Władysław ; Jurkiewicz, Gabriela ; Żygierewicz, Jarosław ; Wójcik, Daniel K. ; Whittington, Miles Adrian ; Hunt, Mark Jeremy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4dd2d886e16f5186f3a425b796fa387aac247850e5947730ac34386f7438973c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378</topic><topic>631/443</topic><topic>Air flow</topic><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Excitatory Amino Acid Antagonists - administration &amp; dosage</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Haloperidol</topic><topic>Haloperidol - adverse effects</topic><topic>Humanities and Social Sciences</topic><topic>Hyperactivity</topic><topic>Ketamine</topic><topic>Ketamine - administration &amp; dosage</topic><topic>Ketamine - pharmacology</topic><topic>Locomotor activity</topic><topic>Male</topic><topic>Motor Activity - drug effects</topic><topic>multidisciplinary</topic><topic>Neostriatum</topic><topic>Nose - drug effects</topic><topic>Nose - physiology</topic><topic>Oscillations</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Respiration</topic><topic>Respiration - drug effects</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Theta Rhythm - drug effects</topic><topic>Theta rhythms</topic><topic>Ventral Striatum - drug effects</topic><topic>Ventral Striatum - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wróbel, Jacek</creatorcontrib><creatorcontrib>Średniawa, Władysław</creatorcontrib><creatorcontrib>Jurkiewicz, Gabriela</creatorcontrib><creatorcontrib>Żygierewicz, Jarosław</creatorcontrib><creatorcontrib>Wójcik, Daniel K.</creatorcontrib><creatorcontrib>Whittington, Miles Adrian</creatorcontrib><creatorcontrib>Hunt, Mark Jeremy</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wróbel, Jacek</au><au>Średniawa, Władysław</au><au>Jurkiewicz, Gabriela</au><au>Żygierewicz, Jarosław</au><au>Wójcik, Daniel K.</au><au>Whittington, Miles Adrian</au><au>Hunt, Mark Jeremy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-04</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>18981</spage><pages>18981-</pages><artnum>18981</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked “fast” theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to “fast” theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side. Bilateral nares blockade reduced ketamine-induced hyperactivity and HFO power and frequency. These findings suggest that nasal airflow entrains ketamine-dependent HFO in diverse brain regions, and that the OB plays an important role in the broadcast of this rhythm.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33149202</pmid><doi>10.1038/s41598-020-75641-1</doi><orcidid>https://orcid.org/0000-0002-3152-4785</orcidid><orcidid>https://orcid.org/0000-0002-0247-1362</orcidid><orcidid>https://orcid.org/0000-0002-7536-0735</orcidid><orcidid>https://orcid.org/0000-0001-5500-973X</orcidid><orcidid>https://orcid.org/0000-0001-7741-2191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-11, Vol.10 (1), p.18981, Article 18981
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642442
source Nature Journals Open Access; Open Access: PubMed Central; SpringerOpen; MEDLINE; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects 631/378
631/443
Air flow
Animals
Behavior, Animal - drug effects
Excitatory Amino Acid Antagonists - administration & dosage
Excitatory Amino Acid Antagonists - pharmacology
Haloperidol
Haloperidol - adverse effects
Humanities and Social Sciences
Hyperactivity
Ketamine
Ketamine - administration & dosage
Ketamine - pharmacology
Locomotor activity
Male
Motor Activity - drug effects
multidisciplinary
Neostriatum
Nose - drug effects
Nose - physiology
Oscillations
Prefrontal cortex
Prefrontal Cortex - drug effects
Prefrontal Cortex - physiology
Rats
Rats, Wistar
Respiration
Respiration - drug effects
Science
Science (multidisciplinary)
Theta Rhythm - drug effects
Theta rhythms
Ventral Striatum - drug effects
Ventral Striatum - physiology
title Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nasal%20respiration%20is%20necessary%20for%20ketamine-dependent%20high%20frequency%20network%20oscillations%20and%20behavioral%20hyperactivity%20in%20rats&rft.jtitle=Scientific%20reports&rft.au=Wr%C3%B3bel,%20Jacek&rft.date=2020-11-04&rft.volume=10&rft.issue=1&rft.spage=18981&rft.pages=18981-&rft.artnum=18981&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-75641-1&rft_dat=%3Cproquest_pubme%3E2471538156%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471538156&rft_id=info:pmid/33149202&rfr_iscdi=true