Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats
Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamin...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-11, Vol.10 (1), p.18981, Article 18981 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 18981 |
container_title | Scientific reports |
container_volume | 10 |
creator | Wróbel, Jacek Średniawa, Władysław Jurkiewicz, Gabriela Żygierewicz, Jarosław Wójcik, Daniel K. Whittington, Miles Adrian Hunt, Mark Jeremy |
description | Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked “fast” theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to “fast” theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side. Bilateral nares blockade reduced ketamine-induced hyperactivity and HFO power and frequency. These findings suggest that nasal airflow entrains ketamine-dependent HFO in diverse brain regions, and that the OB plays an important role in the broadcast of this rhythm. |
doi_str_mv | 10.1038/s41598-020-75641-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471538156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4dd2d886e16f5186f3a425b796fa387aac247850e5947730ac34386f7438973c3</originalsourceid><addsrcrecordid>eNp9UctOGzEUtaqigiA_wKKyxHpaP8czm0oVKqUSajewthzPnYwhsaf2JCgbvp0LoSls8MK2dM89Dx1CTjn7wplsvhbFddtUTLDK6Frxin8gR4IpXQkpxMdX_0MyK-WW4dGiVbz9RA6l5KoVTByRh9-uuCXNUMaQ3RRSpKHQCB5KcXlL-5TpHUxuFSJUHYwQO4gTHcJioH2Gv2uIfov46T7lO5qKD8vlM02hLnZ0DoPbhJRRYtiOkJ2fwiZMWxoiRblyQg56tywwe3mPyc3Fj-vzy-rqz89f59-vKq-MmirVdaJrmhp43Wve1L10Sui5aeveycY454UyjWagW2WMZM5LJRFm8G6N9PKYfNvxjuv5CjqPGdCTHXNYYUqbXLBvJzEMdpE21tRKKCWQ4OyFICcMXSZ7m9Y5omeL0lzLhusaUWKH8jmVkqHfK3Bmn2qzu9os1mafa7Mclz6_9rZf-VcSAuQOUHAUF5D_a79D-wgDEaYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471538156</pqid></control><display><type>article</type><title>Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats</title><source>Nature Journals Open Access</source><source>Open Access: PubMed Central</source><source>SpringerOpen</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Wróbel, Jacek ; Średniawa, Władysław ; Jurkiewicz, Gabriela ; Żygierewicz, Jarosław ; Wójcik, Daniel K. ; Whittington, Miles Adrian ; Hunt, Mark Jeremy</creator><creatorcontrib>Wróbel, Jacek ; Średniawa, Władysław ; Jurkiewicz, Gabriela ; Żygierewicz, Jarosław ; Wójcik, Daniel K. ; Whittington, Miles Adrian ; Hunt, Mark Jeremy</creatorcontrib><description>Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked “fast” theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to “fast” theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side. Bilateral nares blockade reduced ketamine-induced hyperactivity and HFO power and frequency. These findings suggest that nasal airflow entrains ketamine-dependent HFO in diverse brain regions, and that the OB plays an important role in the broadcast of this rhythm.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-75641-1</identifier><identifier>PMID: 33149202</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 631/443 ; Air flow ; Animals ; Behavior, Animal - drug effects ; Excitatory Amino Acid Antagonists - administration & dosage ; Excitatory Amino Acid Antagonists - pharmacology ; Haloperidol ; Haloperidol - adverse effects ; Humanities and Social Sciences ; Hyperactivity ; Ketamine ; Ketamine - administration & dosage ; Ketamine - pharmacology ; Locomotor activity ; Male ; Motor Activity - drug effects ; multidisciplinary ; Neostriatum ; Nose - drug effects ; Nose - physiology ; Oscillations ; Prefrontal cortex ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - physiology ; Rats ; Rats, Wistar ; Respiration ; Respiration - drug effects ; Science ; Science (multidisciplinary) ; Theta Rhythm - drug effects ; Theta rhythms ; Ventral Striatum - drug effects ; Ventral Striatum - physiology</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.18981, Article 18981</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4dd2d886e16f5186f3a425b796fa387aac247850e5947730ac34386f7438973c3</citedby><cites>FETCH-LOGICAL-c474t-4dd2d886e16f5186f3a425b796fa387aac247850e5947730ac34386f7438973c3</cites><orcidid>0000-0002-3152-4785 ; 0000-0002-0247-1362 ; 0000-0002-7536-0735 ; 0000-0001-5500-973X ; 0000-0001-7741-2191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642442/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642442/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33149202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wróbel, Jacek</creatorcontrib><creatorcontrib>Średniawa, Władysław</creatorcontrib><creatorcontrib>Jurkiewicz, Gabriela</creatorcontrib><creatorcontrib>Żygierewicz, Jarosław</creatorcontrib><creatorcontrib>Wójcik, Daniel K.</creatorcontrib><creatorcontrib>Whittington, Miles Adrian</creatorcontrib><creatorcontrib>Hunt, Mark Jeremy</creatorcontrib><title>Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked “fast” theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to “fast” theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side. Bilateral nares blockade reduced ketamine-induced hyperactivity and HFO power and frequency. These findings suggest that nasal airflow entrains ketamine-dependent HFO in diverse brain regions, and that the OB plays an important role in the broadcast of this rhythm.</description><subject>631/378</subject><subject>631/443</subject><subject>Air flow</subject><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Excitatory Amino Acid Antagonists - administration & dosage</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Haloperidol</subject><subject>Haloperidol - adverse effects</subject><subject>Humanities and Social Sciences</subject><subject>Hyperactivity</subject><subject>Ketamine</subject><subject>Ketamine - administration & dosage</subject><subject>Ketamine - pharmacology</subject><subject>Locomotor activity</subject><subject>Male</subject><subject>Motor Activity - drug effects</subject><subject>multidisciplinary</subject><subject>Neostriatum</subject><subject>Nose - drug effects</subject><subject>Nose - physiology</subject><subject>Oscillations</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Respiration</subject><subject>Respiration - drug effects</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Theta Rhythm - drug effects</subject><subject>Theta rhythms</subject><subject>Ventral Striatum - drug effects</subject><subject>Ventral Striatum - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UctOGzEUtaqigiA_wKKyxHpaP8czm0oVKqUSajewthzPnYwhsaf2JCgbvp0LoSls8MK2dM89Dx1CTjn7wplsvhbFddtUTLDK6Frxin8gR4IpXQkpxMdX_0MyK-WW4dGiVbz9RA6l5KoVTByRh9-uuCXNUMaQ3RRSpKHQCB5KcXlL-5TpHUxuFSJUHYwQO4gTHcJioH2Gv2uIfov46T7lO5qKD8vlM02hLnZ0DoPbhJRRYtiOkJ2fwiZMWxoiRblyQg56tywwe3mPyc3Fj-vzy-rqz89f59-vKq-MmirVdaJrmhp43Wve1L10Sui5aeveycY454UyjWagW2WMZM5LJRFm8G6N9PKYfNvxjuv5CjqPGdCTHXNYYUqbXLBvJzEMdpE21tRKKCWQ4OyFICcMXSZ7m9Y5omeL0lzLhusaUWKH8jmVkqHfK3Bmn2qzu9os1mafa7Mclz6_9rZf-VcSAuQOUHAUF5D_a79D-wgDEaYU</recordid><startdate>20201104</startdate><enddate>20201104</enddate><creator>Wróbel, Jacek</creator><creator>Średniawa, Władysław</creator><creator>Jurkiewicz, Gabriela</creator><creator>Żygierewicz, Jarosław</creator><creator>Wójcik, Daniel K.</creator><creator>Whittington, Miles Adrian</creator><creator>Hunt, Mark Jeremy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3152-4785</orcidid><orcidid>https://orcid.org/0000-0002-0247-1362</orcidid><orcidid>https://orcid.org/0000-0002-7536-0735</orcidid><orcidid>https://orcid.org/0000-0001-5500-973X</orcidid><orcidid>https://orcid.org/0000-0001-7741-2191</orcidid></search><sort><creationdate>20201104</creationdate><title>Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats</title><author>Wróbel, Jacek ; Średniawa, Władysław ; Jurkiewicz, Gabriela ; Żygierewicz, Jarosław ; Wójcik, Daniel K. ; Whittington, Miles Adrian ; Hunt, Mark Jeremy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4dd2d886e16f5186f3a425b796fa387aac247850e5947730ac34386f7438973c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378</topic><topic>631/443</topic><topic>Air flow</topic><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Excitatory Amino Acid Antagonists - administration & dosage</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Haloperidol</topic><topic>Haloperidol - adverse effects</topic><topic>Humanities and Social Sciences</topic><topic>Hyperactivity</topic><topic>Ketamine</topic><topic>Ketamine - administration & dosage</topic><topic>Ketamine - pharmacology</topic><topic>Locomotor activity</topic><topic>Male</topic><topic>Motor Activity - drug effects</topic><topic>multidisciplinary</topic><topic>Neostriatum</topic><topic>Nose - drug effects</topic><topic>Nose - physiology</topic><topic>Oscillations</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Respiration</topic><topic>Respiration - drug effects</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Theta Rhythm - drug effects</topic><topic>Theta rhythms</topic><topic>Ventral Striatum - drug effects</topic><topic>Ventral Striatum - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wróbel, Jacek</creatorcontrib><creatorcontrib>Średniawa, Władysław</creatorcontrib><creatorcontrib>Jurkiewicz, Gabriela</creatorcontrib><creatorcontrib>Żygierewicz, Jarosław</creatorcontrib><creatorcontrib>Wójcik, Daniel K.</creatorcontrib><creatorcontrib>Whittington, Miles Adrian</creatorcontrib><creatorcontrib>Hunt, Mark Jeremy</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wróbel, Jacek</au><au>Średniawa, Władysław</au><au>Jurkiewicz, Gabriela</au><au>Żygierewicz, Jarosław</au><au>Wójcik, Daniel K.</au><au>Whittington, Miles Adrian</au><au>Hunt, Mark Jeremy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-04</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>18981</spage><pages>18981-</pages><artnum>18981</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked “fast” theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to “fast” theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side. Bilateral nares blockade reduced ketamine-induced hyperactivity and HFO power and frequency. These findings suggest that nasal airflow entrains ketamine-dependent HFO in diverse brain regions, and that the OB plays an important role in the broadcast of this rhythm.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33149202</pmid><doi>10.1038/s41598-020-75641-1</doi><orcidid>https://orcid.org/0000-0002-3152-4785</orcidid><orcidid>https://orcid.org/0000-0002-0247-1362</orcidid><orcidid>https://orcid.org/0000-0002-7536-0735</orcidid><orcidid>https://orcid.org/0000-0001-5500-973X</orcidid><orcidid>https://orcid.org/0000-0001-7741-2191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-11, Vol.10 (1), p.18981, Article 18981 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642442 |
source | Nature Journals Open Access; Open Access: PubMed Central; SpringerOpen; MEDLINE; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | 631/378 631/443 Air flow Animals Behavior, Animal - drug effects Excitatory Amino Acid Antagonists - administration & dosage Excitatory Amino Acid Antagonists - pharmacology Haloperidol Haloperidol - adverse effects Humanities and Social Sciences Hyperactivity Ketamine Ketamine - administration & dosage Ketamine - pharmacology Locomotor activity Male Motor Activity - drug effects multidisciplinary Neostriatum Nose - drug effects Nose - physiology Oscillations Prefrontal cortex Prefrontal Cortex - drug effects Prefrontal Cortex - physiology Rats Rats, Wistar Respiration Respiration - drug effects Science Science (multidisciplinary) Theta Rhythm - drug effects Theta rhythms Ventral Striatum - drug effects Ventral Striatum - physiology |
title | Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nasal%20respiration%20is%20necessary%20for%20ketamine-dependent%20high%20frequency%20network%20oscillations%20and%20behavioral%20hyperactivity%20in%20rats&rft.jtitle=Scientific%20reports&rft.au=Wr%C3%B3bel,%20Jacek&rft.date=2020-11-04&rft.volume=10&rft.issue=1&rft.spage=18981&rft.pages=18981-&rft.artnum=18981&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-75641-1&rft_dat=%3Cproquest_pubme%3E2471538156%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471538156&rft_id=info:pmid/33149202&rfr_iscdi=true |