Discrete Adaptive Responses to MEK Inhibitor in Subpopulations of Triple-Negative Breast Cancer

Triple-negative breast cancers contain a spectrum of epithelial and mesenchymal phenotypes. SUM-229PE cells represent a model for this heterogeneity, maintaining both epithelial and mesenchymal subpopulations that are genomically similar but distinct in gene expression profiles. We identified differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer research 2020-11, Vol.18 (11), p.1685-1698
Hauptverfasser: Goulet, Daniel R, Foster, 2nd, Joseph P, Zawistowski, Jon S, Bevill, Samantha M, Noël, Mélodie P, Olivares-Quintero, José F, Sciaky, Noah, Singh, Darshan, Santos, Charlene, Pattenden, Samantha G, Davis, Ian J, Johnson, Gary L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1698
container_issue 11
container_start_page 1685
container_title Molecular cancer research
container_volume 18
creator Goulet, Daniel R
Foster, 2nd, Joseph P
Zawistowski, Jon S
Bevill, Samantha M
Noël, Mélodie P
Olivares-Quintero, José F
Sciaky, Noah
Singh, Darshan
Santos, Charlene
Pattenden, Samantha G
Davis, Ian J
Johnson, Gary L
description Triple-negative breast cancers contain a spectrum of epithelial and mesenchymal phenotypes. SUM-229PE cells represent a model for this heterogeneity, maintaining both epithelial and mesenchymal subpopulations that are genomically similar but distinct in gene expression profiles. We identified differential regions of open chromatin in epithelial and mesenchymal cells that were strongly correlated with regions of H3K27ac. Motif analysis of these regions identified consensus sequences for transcription factors that regulate cell identity. Treatment with the MEK inhibitor trametinib induced enhancer remodeling that is associated with transcriptional regulation of genes in epithelial and mesenchymal cells. Motif analysis of enhancer peaks downregulated in response to chronic treatment with trametinib identified AP-1 motif enrichment in both epithelial and mesenchymal subpopulations. Chromatin immunoprecipitation sequencing (ChIP-seq) of JUNB identified subpopulation-specific localization, which was significantly enriched at regions of open chromatin. These results indicate that cell identity controls localization of transcription factors and chromatin-modifying enzymes to enhancers for differential control of gene expression. We identified increased H3K27ac at an enhancer region proximal to CXCR7, a G-protein-coupled receptor that increased 15-fold in expression in the epithelial subpopulation during chronic treatment. RNAi knockdown of CXCR7 inhibited proliferation in trametinib-resistant cells. Thus, adaptive resistance to chronic trametinib treatment contributes to proliferation in the presence of the drug. Acquired amplification of KRAS following trametinib dose escalation further contributed to POS cell proliferation. Adaptive followed by acquired gene expression changes contributed to proliferation in trametinib-resistant cells, suggesting inhibition of early transcriptional reprogramming could prevent resistance and the bypass of targeted therapy. IMPLICATIONS: We defined the differential responses to trametinib in subpopulations of a clinically relevant model of TNBC, and identified both adaptive and acquired elements that contribute to the emergence of drug resistance mediated by increased expression of CXCR7 and amplification of KRAS.
doi_str_mv 10.1158/1541-7786.MCR-19-1011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430653073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-1bbed54ee40124d25a2ef5262d4c93c07d249031f77d7deab9d12c966b29c0543</originalsourceid><addsrcrecordid>eNpVkUtP3TAQhS3UqlDan0DlZTehHj9iskGCW2hReUg81pZjT8BVbpzaDhL_nqRcULvySD7nzOg7hOwB2wdQB99ASai0Pqj3L1bXFTQVMIAtsgNK6UoAV--WeaPZJh9z_s0YZ6DrD2RbcK2E1GKHmO8hu4QF6ZG3YwmPSK8xj3HImGmJ9OLkFz0bHkIbSkw0DPRmasc4Tr0tYRbR2NHbFMYeq0u8t3_9xwltLnRlB4fpE3nf2T7j5827S-5OT25XP6vzqx9nq6PzykmAUkHbolcSUTLg0nNlOXaK19xL1wjHtOeyYQI6rb32aNvGA3dNXbe8cUxJsUsOX3LHqV2jdziUZHszprC26clEG8z_P0N4MPfx0eha8hnKHPB1E5DinwlzMeuZDPa9HTBO2XApWK0E02KWqhepSzHnhN3bGmBmKccs4M0C3szlGGjMUs7s-_LvjW-u1zbEMz7hjGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430653073</pqid></control><display><type>article</type><title>Discrete Adaptive Responses to MEK Inhibitor in Subpopulations of Triple-Negative Breast Cancer</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Association for Cancer Research</source><source>Free Full-Text Journals in Chemistry</source><creator>Goulet, Daniel R ; Foster, 2nd, Joseph P ; Zawistowski, Jon S ; Bevill, Samantha M ; Noël, Mélodie P ; Olivares-Quintero, José F ; Sciaky, Noah ; Singh, Darshan ; Santos, Charlene ; Pattenden, Samantha G ; Davis, Ian J ; Johnson, Gary L</creator><creatorcontrib>Goulet, Daniel R ; Foster, 2nd, Joseph P ; Zawistowski, Jon S ; Bevill, Samantha M ; Noël, Mélodie P ; Olivares-Quintero, José F ; Sciaky, Noah ; Singh, Darshan ; Santos, Charlene ; Pattenden, Samantha G ; Davis, Ian J ; Johnson, Gary L</creatorcontrib><description>Triple-negative breast cancers contain a spectrum of epithelial and mesenchymal phenotypes. SUM-229PE cells represent a model for this heterogeneity, maintaining both epithelial and mesenchymal subpopulations that are genomically similar but distinct in gene expression profiles. We identified differential regions of open chromatin in epithelial and mesenchymal cells that were strongly correlated with regions of H3K27ac. Motif analysis of these regions identified consensus sequences for transcription factors that regulate cell identity. Treatment with the MEK inhibitor trametinib induced enhancer remodeling that is associated with transcriptional regulation of genes in epithelial and mesenchymal cells. Motif analysis of enhancer peaks downregulated in response to chronic treatment with trametinib identified AP-1 motif enrichment in both epithelial and mesenchymal subpopulations. Chromatin immunoprecipitation sequencing (ChIP-seq) of JUNB identified subpopulation-specific localization, which was significantly enriched at regions of open chromatin. These results indicate that cell identity controls localization of transcription factors and chromatin-modifying enzymes to enhancers for differential control of gene expression. We identified increased H3K27ac at an enhancer region proximal to CXCR7, a G-protein-coupled receptor that increased 15-fold in expression in the epithelial subpopulation during chronic treatment. RNAi knockdown of CXCR7 inhibited proliferation in trametinib-resistant cells. Thus, adaptive resistance to chronic trametinib treatment contributes to proliferation in the presence of the drug. Acquired amplification of KRAS following trametinib dose escalation further contributed to POS cell proliferation. Adaptive followed by acquired gene expression changes contributed to proliferation in trametinib-resistant cells, suggesting inhibition of early transcriptional reprogramming could prevent resistance and the bypass of targeted therapy. IMPLICATIONS: We defined the differential responses to trametinib in subpopulations of a clinically relevant model of TNBC, and identified both adaptive and acquired elements that contribute to the emergence of drug resistance mediated by increased expression of CXCR7 and amplification of KRAS.</description><identifier>ISSN: 1541-7786</identifier><identifier>EISSN: 1557-3125</identifier><identifier>DOI: 10.1158/1541-7786.MCR-19-1011</identifier><identifier>PMID: 32753473</identifier><language>eng</language><publisher>United States</publisher><subject>Female ; Humans ; Mitogen-Activated Protein Kinase Kinases - antagonists &amp; inhibitors ; Triple Negative Breast Neoplasms - genetics</subject><ispartof>Molecular cancer research, 2020-11, Vol.18 (11), p.1685-1698</ispartof><rights>2020 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-1bbed54ee40124d25a2ef5262d4c93c07d249031f77d7deab9d12c966b29c0543</citedby><cites>FETCH-LOGICAL-c411t-1bbed54ee40124d25a2ef5262d4c93c07d249031f77d7deab9d12c966b29c0543</cites><orcidid>0000-0003-2867-0551 ; 0000-0003-2057-4629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3356,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32753473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goulet, Daniel R</creatorcontrib><creatorcontrib>Foster, 2nd, Joseph P</creatorcontrib><creatorcontrib>Zawistowski, Jon S</creatorcontrib><creatorcontrib>Bevill, Samantha M</creatorcontrib><creatorcontrib>Noël, Mélodie P</creatorcontrib><creatorcontrib>Olivares-Quintero, José F</creatorcontrib><creatorcontrib>Sciaky, Noah</creatorcontrib><creatorcontrib>Singh, Darshan</creatorcontrib><creatorcontrib>Santos, Charlene</creatorcontrib><creatorcontrib>Pattenden, Samantha G</creatorcontrib><creatorcontrib>Davis, Ian J</creatorcontrib><creatorcontrib>Johnson, Gary L</creatorcontrib><title>Discrete Adaptive Responses to MEK Inhibitor in Subpopulations of Triple-Negative Breast Cancer</title><title>Molecular cancer research</title><addtitle>Mol Cancer Res</addtitle><description>Triple-negative breast cancers contain a spectrum of epithelial and mesenchymal phenotypes. SUM-229PE cells represent a model for this heterogeneity, maintaining both epithelial and mesenchymal subpopulations that are genomically similar but distinct in gene expression profiles. We identified differential regions of open chromatin in epithelial and mesenchymal cells that were strongly correlated with regions of H3K27ac. Motif analysis of these regions identified consensus sequences for transcription factors that regulate cell identity. Treatment with the MEK inhibitor trametinib induced enhancer remodeling that is associated with transcriptional regulation of genes in epithelial and mesenchymal cells. Motif analysis of enhancer peaks downregulated in response to chronic treatment with trametinib identified AP-1 motif enrichment in both epithelial and mesenchymal subpopulations. Chromatin immunoprecipitation sequencing (ChIP-seq) of JUNB identified subpopulation-specific localization, which was significantly enriched at regions of open chromatin. These results indicate that cell identity controls localization of transcription factors and chromatin-modifying enzymes to enhancers for differential control of gene expression. We identified increased H3K27ac at an enhancer region proximal to CXCR7, a G-protein-coupled receptor that increased 15-fold in expression in the epithelial subpopulation during chronic treatment. RNAi knockdown of CXCR7 inhibited proliferation in trametinib-resistant cells. Thus, adaptive resistance to chronic trametinib treatment contributes to proliferation in the presence of the drug. Acquired amplification of KRAS following trametinib dose escalation further contributed to POS cell proliferation. Adaptive followed by acquired gene expression changes contributed to proliferation in trametinib-resistant cells, suggesting inhibition of early transcriptional reprogramming could prevent resistance and the bypass of targeted therapy. IMPLICATIONS: We defined the differential responses to trametinib in subpopulations of a clinically relevant model of TNBC, and identified both adaptive and acquired elements that contribute to the emergence of drug resistance mediated by increased expression of CXCR7 and amplification of KRAS.</description><subject>Female</subject><subject>Humans</subject><subject>Mitogen-Activated Protein Kinase Kinases - antagonists &amp; inhibitors</subject><subject>Triple Negative Breast Neoplasms - genetics</subject><issn>1541-7786</issn><issn>1557-3125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtP3TAQhS3UqlDan0DlZTehHj9iskGCW2hReUg81pZjT8BVbpzaDhL_nqRcULvySD7nzOg7hOwB2wdQB99ASai0Pqj3L1bXFTQVMIAtsgNK6UoAV--WeaPZJh9z_s0YZ6DrD2RbcK2E1GKHmO8hu4QF6ZG3YwmPSK8xj3HImGmJ9OLkFz0bHkIbSkw0DPRmasc4Tr0tYRbR2NHbFMYeq0u8t3_9xwltLnRlB4fpE3nf2T7j5827S-5OT25XP6vzqx9nq6PzykmAUkHbolcSUTLg0nNlOXaK19xL1wjHtOeyYQI6rb32aNvGA3dNXbe8cUxJsUsOX3LHqV2jdziUZHszprC26clEG8z_P0N4MPfx0eha8hnKHPB1E5DinwlzMeuZDPa9HTBO2XApWK0E02KWqhepSzHnhN3bGmBmKccs4M0C3szlGGjMUs7s-_LvjW-u1zbEMz7hjGw</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Goulet, Daniel R</creator><creator>Foster, 2nd, Joseph P</creator><creator>Zawistowski, Jon S</creator><creator>Bevill, Samantha M</creator><creator>Noël, Mélodie P</creator><creator>Olivares-Quintero, José F</creator><creator>Sciaky, Noah</creator><creator>Singh, Darshan</creator><creator>Santos, Charlene</creator><creator>Pattenden, Samantha G</creator><creator>Davis, Ian J</creator><creator>Johnson, Gary L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2867-0551</orcidid><orcidid>https://orcid.org/0000-0003-2057-4629</orcidid></search><sort><creationdate>20201101</creationdate><title>Discrete Adaptive Responses to MEK Inhibitor in Subpopulations of Triple-Negative Breast Cancer</title><author>Goulet, Daniel R ; Foster, 2nd, Joseph P ; Zawistowski, Jon S ; Bevill, Samantha M ; Noël, Mélodie P ; Olivares-Quintero, José F ; Sciaky, Noah ; Singh, Darshan ; Santos, Charlene ; Pattenden, Samantha G ; Davis, Ian J ; Johnson, Gary L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-1bbed54ee40124d25a2ef5262d4c93c07d249031f77d7deab9d12c966b29c0543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Female</topic><topic>Humans</topic><topic>Mitogen-Activated Protein Kinase Kinases - antagonists &amp; inhibitors</topic><topic>Triple Negative Breast Neoplasms - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goulet, Daniel R</creatorcontrib><creatorcontrib>Foster, 2nd, Joseph P</creatorcontrib><creatorcontrib>Zawistowski, Jon S</creatorcontrib><creatorcontrib>Bevill, Samantha M</creatorcontrib><creatorcontrib>Noël, Mélodie P</creatorcontrib><creatorcontrib>Olivares-Quintero, José F</creatorcontrib><creatorcontrib>Sciaky, Noah</creatorcontrib><creatorcontrib>Singh, Darshan</creatorcontrib><creatorcontrib>Santos, Charlene</creatorcontrib><creatorcontrib>Pattenden, Samantha G</creatorcontrib><creatorcontrib>Davis, Ian J</creatorcontrib><creatorcontrib>Johnson, Gary L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goulet, Daniel R</au><au>Foster, 2nd, Joseph P</au><au>Zawistowski, Jon S</au><au>Bevill, Samantha M</au><au>Noël, Mélodie P</au><au>Olivares-Quintero, José F</au><au>Sciaky, Noah</au><au>Singh, Darshan</au><au>Santos, Charlene</au><au>Pattenden, Samantha G</au><au>Davis, Ian J</au><au>Johnson, Gary L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Adaptive Responses to MEK Inhibitor in Subpopulations of Triple-Negative Breast Cancer</atitle><jtitle>Molecular cancer research</jtitle><addtitle>Mol Cancer Res</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>18</volume><issue>11</issue><spage>1685</spage><epage>1698</epage><pages>1685-1698</pages><issn>1541-7786</issn><eissn>1557-3125</eissn><abstract>Triple-negative breast cancers contain a spectrum of epithelial and mesenchymal phenotypes. SUM-229PE cells represent a model for this heterogeneity, maintaining both epithelial and mesenchymal subpopulations that are genomically similar but distinct in gene expression profiles. We identified differential regions of open chromatin in epithelial and mesenchymal cells that were strongly correlated with regions of H3K27ac. Motif analysis of these regions identified consensus sequences for transcription factors that regulate cell identity. Treatment with the MEK inhibitor trametinib induced enhancer remodeling that is associated with transcriptional regulation of genes in epithelial and mesenchymal cells. Motif analysis of enhancer peaks downregulated in response to chronic treatment with trametinib identified AP-1 motif enrichment in both epithelial and mesenchymal subpopulations. Chromatin immunoprecipitation sequencing (ChIP-seq) of JUNB identified subpopulation-specific localization, which was significantly enriched at regions of open chromatin. These results indicate that cell identity controls localization of transcription factors and chromatin-modifying enzymes to enhancers for differential control of gene expression. We identified increased H3K27ac at an enhancer region proximal to CXCR7, a G-protein-coupled receptor that increased 15-fold in expression in the epithelial subpopulation during chronic treatment. RNAi knockdown of CXCR7 inhibited proliferation in trametinib-resistant cells. Thus, adaptive resistance to chronic trametinib treatment contributes to proliferation in the presence of the drug. Acquired amplification of KRAS following trametinib dose escalation further contributed to POS cell proliferation. Adaptive followed by acquired gene expression changes contributed to proliferation in trametinib-resistant cells, suggesting inhibition of early transcriptional reprogramming could prevent resistance and the bypass of targeted therapy. IMPLICATIONS: We defined the differential responses to trametinib in subpopulations of a clinically relevant model of TNBC, and identified both adaptive and acquired elements that contribute to the emergence of drug resistance mediated by increased expression of CXCR7 and amplification of KRAS.</abstract><cop>United States</cop><pmid>32753473</pmid><doi>10.1158/1541-7786.MCR-19-1011</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2867-0551</orcidid><orcidid>https://orcid.org/0000-0003-2057-4629</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1541-7786
ispartof Molecular cancer research, 2020-11, Vol.18 (11), p.1685-1698
issn 1541-7786
1557-3125
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642176
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Association for Cancer Research; Free Full-Text Journals in Chemistry
subjects Female
Humans
Mitogen-Activated Protein Kinase Kinases - antagonists & inhibitors
Triple Negative Breast Neoplasms - genetics
title Discrete Adaptive Responses to MEK Inhibitor in Subpopulations of Triple-Negative Breast Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Adaptive%20Responses%20to%20MEK%20Inhibitor%20in%20Subpopulations%20of%20Triple-Negative%20Breast%20Cancer&rft.jtitle=Molecular%20cancer%20research&rft.au=Goulet,%20Daniel%20R&rft.date=2020-11-01&rft.volume=18&rft.issue=11&rft.spage=1685&rft.epage=1698&rft.pages=1685-1698&rft.issn=1541-7786&rft.eissn=1557-3125&rft_id=info:doi/10.1158/1541-7786.MCR-19-1011&rft_dat=%3Cproquest_pubme%3E2430653073%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430653073&rft_id=info:pmid/32753473&rfr_iscdi=true