UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis

Auxin is a key plant growth regulator for diverse developmental processes in plants. Indole-3-acetic acid (IAA) is a primary plant auxin that regulates the formation of various organs. Plants also produce phenylacetic acid (PAA), another natural auxin, which occurs more abundantly than IAA in variou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2020-11, Vol.532 (2), p.244-250
Hauptverfasser: Aoi, Yuki, Hira, Hayao, Hayakawa, Yuya, Liu, Hongquan, Fukui, Kosuke, Dai, Xinhua, Tanaka, Keita, Hayashi, Ken-ichiro, Zhao, Yunde, Kasahara, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 2
container_start_page 244
container_title Biochemical and biophysical research communications
container_volume 532
creator Aoi, Yuki
Hira, Hayao
Hayakawa, Yuya
Liu, Hongquan
Fukui, Kosuke
Dai, Xinhua
Tanaka, Keita
Hayashi, Ken-ichiro
Zhao, Yunde
Kasahara, Hiroyuki
description Auxin is a key plant growth regulator for diverse developmental processes in plants. Indole-3-acetic acid (IAA) is a primary plant auxin that regulates the formation of various organs. Plants also produce phenylacetic acid (PAA), another natural auxin, which occurs more abundantly than IAA in various plant species. Although it has been demonstrated that the two auxins have distinct transport characteristics, the metabolic pathways and physiological roles of PAA in plants remain unsolved. In this study, we investigated the role of Arabidopsis UDP-glucosyltransferase UGT84B1 in IAA and PAA metabolism. We demonstrated that UGT84B1, which converts IAA to IAA-glucoside (IAA-Glc), can also catalyze the conversion of PAA to PAA-glucoside (PAA-Glc), with a higher catalytic activity in vitro. Furthermore, we showed a significant increase in both the IAA and PAA levels in the ugt84b1 null mutants. However, no obvious developmental phenotypes were observed in the ugt84b1 mutants under laboratory growth conditions. Moreover, the overexpression of UGT84B1 resulted in auxin-deficient root phenotypes and changes in the IAA and PAA levels. Our results indicate that UGT84B1 plays an important role in IAA and PAA homeostasis in Arabidopsis. •Arabidopsis UGT84B1 proteins catalyzed the glucosylation of both IAA and PAA in vitro.•Both the IAA and PAA levels increased in the ugt84b1 knockout mutants.•The ugt84b1 null mutants still produced IAA-glucoside.•UGT84B1 overexpression altered both the IAA and PAA levels in Arabidopsis.•UGT84B1 homologs may also contribute to IAA and PAA homeostasis.
doi_str_mv 10.1016/j.bbrc.2020.08.026
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7641881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X20315771</els_id><sourcerecordid>S0006291X20315771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-e522fd944726ead1a5cde617470248955dfe92f55496dd7bbf337b9a19d506353</originalsourceid><addsrcrecordid>eNp9kd1q3DAQhUVIabZJXyAXRS9gdyRLsgUlkJ82DQSaiyzkTsjSeFeLYm8k78K-fb1sGtKbXA3MnPMNM4eQcwYlA6a-r8q2Ta7kwKGEpgSujsiMgYaCMxDHZAYAquCaPZ2QLzmvABgTSn8mJxVvVAO1npGX-c1DsYgbN-RdHJPtc4fJZqTz28dGXDGacLGJdsRMxyXSiFuMmQ4dDb0fIhZVYR2OwVHrgqe293S9xH4X33dDTy-TbYMf1jnkM_KpszHj19d6Sua_fj5e_y7u_9zeXV_eF05yNhYoOe-8FqLmCq1nVjqPitWiBi4aLaXvUPNOSqGV93XbdlVVt9oy7SWoSlan5OLAXW_aZ_QO--m8aNYpPNu0M4MN5v9JH5ZmMWxNrQRrGjYB-AHg0pBzwu7Ny8DsAzArsw_A7AMw0JgpgMn07f3WN8u_j0-CHwfB9EfcBkwmu4C9Qx8SutH4IXzE_wvpUZj6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Aoi, Yuki ; Hira, Hayao ; Hayakawa, Yuya ; Liu, Hongquan ; Fukui, Kosuke ; Dai, Xinhua ; Tanaka, Keita ; Hayashi, Ken-ichiro ; Zhao, Yunde ; Kasahara, Hiroyuki</creator><creatorcontrib>Aoi, Yuki ; Hira, Hayao ; Hayakawa, Yuya ; Liu, Hongquan ; Fukui, Kosuke ; Dai, Xinhua ; Tanaka, Keita ; Hayashi, Ken-ichiro ; Zhao, Yunde ; Kasahara, Hiroyuki</creatorcontrib><description>Auxin is a key plant growth regulator for diverse developmental processes in plants. Indole-3-acetic acid (IAA) is a primary plant auxin that regulates the formation of various organs. Plants also produce phenylacetic acid (PAA), another natural auxin, which occurs more abundantly than IAA in various plant species. Although it has been demonstrated that the two auxins have distinct transport characteristics, the metabolic pathways and physiological roles of PAA in plants remain unsolved. In this study, we investigated the role of Arabidopsis UDP-glucosyltransferase UGT84B1 in IAA and PAA metabolism. We demonstrated that UGT84B1, which converts IAA to IAA-glucoside (IAA-Glc), can also catalyze the conversion of PAA to PAA-glucoside (PAA-Glc), with a higher catalytic activity in vitro. Furthermore, we showed a significant increase in both the IAA and PAA levels in the ugt84b1 null mutants. However, no obvious developmental phenotypes were observed in the ugt84b1 mutants under laboratory growth conditions. Moreover, the overexpression of UGT84B1 resulted in auxin-deficient root phenotypes and changes in the IAA and PAA levels. Our results indicate that UGT84B1 plays an important role in IAA and PAA homeostasis in Arabidopsis. •Arabidopsis UGT84B1 proteins catalyzed the glucosylation of both IAA and PAA in vitro.•Both the IAA and PAA levels increased in the ugt84b1 knockout mutants.•The ugt84b1 null mutants still produced IAA-glucoside.•UGT84B1 overexpression altered both the IAA and PAA levels in Arabidopsis.•UGT84B1 homologs may also contribute to IAA and PAA homeostasis.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2020.08.026</identifier><identifier>PMID: 32868079</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Auxin ; CRISPR-Cas Systems ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression Regulation, Plant ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Indole-3-acetic acid ; Indoleacetic Acids - metabolism ; Metabolism ; Mutation ; Phenylacetates - metabolism ; Phenylacetic acid ; Plants, Genetically Modified ; UDP-Glucosyltransferase</subject><ispartof>Biochemical and biophysical research communications, 2020-11, Vol.532 (2), p.244-250</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-e522fd944726ead1a5cde617470248955dfe92f55496dd7bbf337b9a19d506353</citedby><cites>FETCH-LOGICAL-c521t-e522fd944726ead1a5cde617470248955dfe92f55496dd7bbf337b9a19d506353</cites><orcidid>0000-0002-4858-0978 ; 0000-0002-8274-3355 ; 0000-0002-5551-5525 ; 0000-0002-4921-307X ; 0000-0002-7224-8449 ; 0000-0002-9812-2801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2020.08.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32868079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aoi, Yuki</creatorcontrib><creatorcontrib>Hira, Hayao</creatorcontrib><creatorcontrib>Hayakawa, Yuya</creatorcontrib><creatorcontrib>Liu, Hongquan</creatorcontrib><creatorcontrib>Fukui, Kosuke</creatorcontrib><creatorcontrib>Dai, Xinhua</creatorcontrib><creatorcontrib>Tanaka, Keita</creatorcontrib><creatorcontrib>Hayashi, Ken-ichiro</creatorcontrib><creatorcontrib>Zhao, Yunde</creatorcontrib><creatorcontrib>Kasahara, Hiroyuki</creatorcontrib><title>UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Auxin is a key plant growth regulator for diverse developmental processes in plants. Indole-3-acetic acid (IAA) is a primary plant auxin that regulates the formation of various organs. Plants also produce phenylacetic acid (PAA), another natural auxin, which occurs more abundantly than IAA in various plant species. Although it has been demonstrated that the two auxins have distinct transport characteristics, the metabolic pathways and physiological roles of PAA in plants remain unsolved. In this study, we investigated the role of Arabidopsis UDP-glucosyltransferase UGT84B1 in IAA and PAA metabolism. We demonstrated that UGT84B1, which converts IAA to IAA-glucoside (IAA-Glc), can also catalyze the conversion of PAA to PAA-glucoside (PAA-Glc), with a higher catalytic activity in vitro. Furthermore, we showed a significant increase in both the IAA and PAA levels in the ugt84b1 null mutants. However, no obvious developmental phenotypes were observed in the ugt84b1 mutants under laboratory growth conditions. Moreover, the overexpression of UGT84B1 resulted in auxin-deficient root phenotypes and changes in the IAA and PAA levels. Our results indicate that UGT84B1 plays an important role in IAA and PAA homeostasis in Arabidopsis. •Arabidopsis UGT84B1 proteins catalyzed the glucosylation of both IAA and PAA in vitro.•Both the IAA and PAA levels increased in the ugt84b1 knockout mutants.•The ugt84b1 null mutants still produced IAA-glucoside.•UGT84B1 overexpression altered both the IAA and PAA levels in Arabidopsis.•UGT84B1 homologs may also contribute to IAA and PAA homeostasis.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Auxin</subject><subject>CRISPR-Cas Systems</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Indole-3-acetic acid</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Phenylacetates - metabolism</subject><subject>Phenylacetic acid</subject><subject>Plants, Genetically Modified</subject><subject>UDP-Glucosyltransferase</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd1q3DAQhUVIabZJXyAXRS9gdyRLsgUlkJ82DQSaiyzkTsjSeFeLYm8k78K-fb1sGtKbXA3MnPMNM4eQcwYlA6a-r8q2Ta7kwKGEpgSujsiMgYaCMxDHZAYAquCaPZ2QLzmvABgTSn8mJxVvVAO1npGX-c1DsYgbN-RdHJPtc4fJZqTz28dGXDGacLGJdsRMxyXSiFuMmQ4dDb0fIhZVYR2OwVHrgqe293S9xH4X33dDTy-TbYMf1jnkM_KpszHj19d6Sua_fj5e_y7u_9zeXV_eF05yNhYoOe-8FqLmCq1nVjqPitWiBi4aLaXvUPNOSqGV93XbdlVVt9oy7SWoSlan5OLAXW_aZ_QO--m8aNYpPNu0M4MN5v9JH5ZmMWxNrQRrGjYB-AHg0pBzwu7Ny8DsAzArsw_A7AMw0JgpgMn07f3WN8u_j0-CHwfB9EfcBkwmu4C9Qx8SutH4IXzE_wvpUZj6</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Aoi, Yuki</creator><creator>Hira, Hayao</creator><creator>Hayakawa, Yuya</creator><creator>Liu, Hongquan</creator><creator>Fukui, Kosuke</creator><creator>Dai, Xinhua</creator><creator>Tanaka, Keita</creator><creator>Hayashi, Ken-ichiro</creator><creator>Zhao, Yunde</creator><creator>Kasahara, Hiroyuki</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4858-0978</orcidid><orcidid>https://orcid.org/0000-0002-8274-3355</orcidid><orcidid>https://orcid.org/0000-0002-5551-5525</orcidid><orcidid>https://orcid.org/0000-0002-4921-307X</orcidid><orcidid>https://orcid.org/0000-0002-7224-8449</orcidid><orcidid>https://orcid.org/0000-0002-9812-2801</orcidid></search><sort><creationdate>20201105</creationdate><title>UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis</title><author>Aoi, Yuki ; Hira, Hayao ; Hayakawa, Yuya ; Liu, Hongquan ; Fukui, Kosuke ; Dai, Xinhua ; Tanaka, Keita ; Hayashi, Ken-ichiro ; Zhao, Yunde ; Kasahara, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-e522fd944726ead1a5cde617470248955dfe92f55496dd7bbf337b9a19d506353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Auxin</topic><topic>CRISPR-Cas Systems</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Indole-3-acetic acid</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Phenylacetates - metabolism</topic><topic>Phenylacetic acid</topic><topic>Plants, Genetically Modified</topic><topic>UDP-Glucosyltransferase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoi, Yuki</creatorcontrib><creatorcontrib>Hira, Hayao</creatorcontrib><creatorcontrib>Hayakawa, Yuya</creatorcontrib><creatorcontrib>Liu, Hongquan</creatorcontrib><creatorcontrib>Fukui, Kosuke</creatorcontrib><creatorcontrib>Dai, Xinhua</creatorcontrib><creatorcontrib>Tanaka, Keita</creatorcontrib><creatorcontrib>Hayashi, Ken-ichiro</creatorcontrib><creatorcontrib>Zhao, Yunde</creatorcontrib><creatorcontrib>Kasahara, Hiroyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoi, Yuki</au><au>Hira, Hayao</au><au>Hayakawa, Yuya</au><au>Liu, Hongquan</au><au>Fukui, Kosuke</au><au>Dai, Xinhua</au><au>Tanaka, Keita</au><au>Hayashi, Ken-ichiro</au><au>Zhao, Yunde</au><au>Kasahara, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>532</volume><issue>2</issue><spage>244</spage><epage>250</epage><pages>244-250</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Auxin is a key plant growth regulator for diverse developmental processes in plants. Indole-3-acetic acid (IAA) is a primary plant auxin that regulates the formation of various organs. Plants also produce phenylacetic acid (PAA), another natural auxin, which occurs more abundantly than IAA in various plant species. Although it has been demonstrated that the two auxins have distinct transport characteristics, the metabolic pathways and physiological roles of PAA in plants remain unsolved. In this study, we investigated the role of Arabidopsis UDP-glucosyltransferase UGT84B1 in IAA and PAA metabolism. We demonstrated that UGT84B1, which converts IAA to IAA-glucoside (IAA-Glc), can also catalyze the conversion of PAA to PAA-glucoside (PAA-Glc), with a higher catalytic activity in vitro. Furthermore, we showed a significant increase in both the IAA and PAA levels in the ugt84b1 null mutants. However, no obvious developmental phenotypes were observed in the ugt84b1 mutants under laboratory growth conditions. Moreover, the overexpression of UGT84B1 resulted in auxin-deficient root phenotypes and changes in the IAA and PAA levels. Our results indicate that UGT84B1 plays an important role in IAA and PAA homeostasis in Arabidopsis. •Arabidopsis UGT84B1 proteins catalyzed the glucosylation of both IAA and PAA in vitro.•Both the IAA and PAA levels increased in the ugt84b1 knockout mutants.•The ugt84b1 null mutants still produced IAA-glucoside.•UGT84B1 overexpression altered both the IAA and PAA levels in Arabidopsis.•UGT84B1 homologs may also contribute to IAA and PAA homeostasis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32868079</pmid><doi>10.1016/j.bbrc.2020.08.026</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4858-0978</orcidid><orcidid>https://orcid.org/0000-0002-8274-3355</orcidid><orcidid>https://orcid.org/0000-0002-5551-5525</orcidid><orcidid>https://orcid.org/0000-0002-4921-307X</orcidid><orcidid>https://orcid.org/0000-0002-7224-8449</orcidid><orcidid>https://orcid.org/0000-0002-9812-2801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2020-11, Vol.532 (2), p.244-250
issn 0006-291X
1090-2104
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7641881
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Auxin
CRISPR-Cas Systems
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression Regulation, Plant
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
Indole-3-acetic acid
Indoleacetic Acids - metabolism
Metabolism
Mutation
Phenylacetates - metabolism
Phenylacetic acid
Plants, Genetically Modified
UDP-Glucosyltransferase
title UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UDP-glucosyltransferase%20UGT84B1%20regulates%20the%20levels%20of%20indole-3-acetic%20acid%20and%20phenylacetic%20acid%20in%20Arabidopsis&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Aoi,%20Yuki&rft.date=2020-11-05&rft.volume=532&rft.issue=2&rft.spage=244&rft.epage=250&rft.pages=244-250&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2020.08.026&rft_dat=%3Celsevier_pubme%3ES0006291X20315771%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32868079&rft_els_id=S0006291X20315771&rfr_iscdi=true