MicroRNA-296-5p inhibits cell metastasis and invasion in nasopharyngeal carcinoma by reversing transforming growth factor-β-induced epithelial-mesenchymal transition

Aim To explore the effect of miR-296-5p on the metastasis of nasopharyngeal carcinoma (NPC) cells and investigate the underlying mechanism. Methods The expressions of miR-296-5p in NPC tissues and cells were determined using GSE32920 database analysis and real-time PCR and miRNA microarray assays. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular & molecular biology letters 2020-11, Vol.25 (1), p.49-49, Article 49
Hauptverfasser: Chen, Meihui, Chen, Chen, Luo, Haiqing, Ren, Jing, Dai, Qiuqin, Hu, Wenjia, Zhou, Keyuan, Tang, Xudong, Li, Xiangyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim To explore the effect of miR-296-5p on the metastasis of nasopharyngeal carcinoma (NPC) cells and investigate the underlying mechanism. Methods The expressions of miR-296-5p in NPC tissues and cells were determined using GSE32920 database analysis and real-time PCR and miRNA microarray assays. An miR-296-5p mimic and inhibitor were transfected into NPC cells. Then, immunofluorescence imaging, scratch wound-healing, transwell migration and invasion assays were used to observe the effects of miR-296-5p on cell metastasis and invasion. Real-time PCR and western blotting were carried out to detect the expressions of genes and proteins related to epithelial-mesenchymal transition (EMT). A dual luciferase reporter assay was used to identify whether TGF-beta is the target gene of miR-296-5p. Finally, TGF-beta expression plasmids were transfected into NPC cells to verify the role of TGF-beta in the miR-296-5p-mediated inhibition of nasopharyngeal carcinoma cell metastasis. Results Our results show that miR-296-5p inhibits the migratory and invasive capacities of NPC cells by targeting TGF-beta, which suppresses EMT. Importantly, the miR-296-5p level was significantly lower in human NPC tissues than in adjacent normal tissues. It also negatively correlated with TGF-beta and was significantly associated with the lymph node metastasis of patients with NPC. Conclusions Our findings show that miR-296-5p represses the EMT-related metastasis of NPC by targeting TGF-beta. This provides new insight into the role of miR-296-5p in regulating NPC metastasis and invasiveness.
ISSN:1425-8153
1689-1392
DOI:10.1186/s11658-020-00240-x