Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage

The role of poroelasticity on the functional performance of articular cartilage has been established in the scientific literature since the 1960s. Despite the extensive knowledge on this topic there remain few attempts to design for poroelasticity and to our knowledge no demonstration of an engineer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2023-09, Vol.167, p.69-82
Hauptverfasser: Moore, A.C., Hennessy, M.G., Nogueira, L.P., Franks, S.J., Taffetani, M., Seong, H., Kang, Y.K., Tan, W.S., Miklosic, G., El Laham, R., Zhou, K., Zharova, L., King, J.R., Wagner, B., Haugen, H.J., Münch, A., Stevens, M.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 69
container_title Acta biomaterialia
container_volume 167
creator Moore, A.C.
Hennessy, M.G.
Nogueira, L.P.
Franks, S.J.
Taffetani, M.
Seong, H.
Kang, Y.K.
Tan, W.S.
Miklosic, G.
El Laham, R.
Zhou, K.
Zharova, L.
King, J.R.
Wagner, B.
Haugen, H.J.
Münch, A.
Stevens, M.M.
description The role of poroelasticity on the functional performance of articular cartilage has been established in the scientific literature since the 1960s. Despite the extensive knowledge on this topic there remain few attempts to design for poroelasticity and to our knowledge no demonstration of an engineered poroelastic material that approaches the physiological performance. In this paper, we report on the development of an engineered material that begins to approach physiological poroelasticity. We quantify poroelasticity using the fluid load fraction, apply mixture theory to model the material system, and determine cytocompatibility using primary human mesenchymal stem cells. The design approach is based on a fiber reinforced hydrated network and uses routine fabrication methods (electrohydrodynamic deposition) and materials (poly[ɛ-caprolactone] and gelatin) to develop the engineered poroelastic material. This composite material achieved a mean peak fluid load fraction of 68%, displayed consistency with mixture theory, and demonstrated cytocompatibility. This work creates a foundation for designing poroelastic cartilage implants and developing scaffold systems to study chondrocyte mechanobiology and tissue engineering. Poroelasticity drives the functional mechanics of articular cartilage (load bearing and lubrication). In this work we develop the design rationale and approach to produce a poroelastic material, known as a fiber reinforced hydrated network (FiHy™), that begins to approach the native performance of articular cartilage. This is the first engineered material system capable of exceeding isotropic linear poroelastic theory. The framework developed here enables fundamental studies of poroelasticity and the development of translational materials for cartilage repair. [Display omitted]
doi_str_mv 10.1016/j.actbio.2023.06.015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7617126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706123003409</els_id><sourcerecordid>2827665083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-7f33d7cbf695761fd42909a47c7dd4bd084358338d93010b40757b8e7799884b3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EoiXwDxDykcsu_lrbe0FCFQWkSr3Qs-u1ZxuHjR1sp1X_PY7SFrj04hnNxzszfhB6T0lPCZWfNr11dQqpZ4Txnsie0OEFOqVa6U4NUr9svhKsU0TSE_SmlA0hXFOmX6MTrjinkvJTdH0eJsg4Q4hzyg48Xt_7bGtzItS7lH-VlnR2F-p-aWFc14B3KSdYbKnB4S24tY3BFZxmbHMLtbqM3cFd7A28Ra9muxR492BX6Or868-z793F5bcfZ18uOie0rp2aOffKTbMcByXp7AUbyWiFcsp7MXmiBR8059qPnFAyCaIGNWlQahy1FhNfoc9H3d1-2oJ3EGu2i9nlsLX53iQbzP-ZGNbmJt2aNk1RJpsAPgq4HNpl0cSUraFED6y9bNCslXx8mJHT7z2UarahOFgWGyHti2GaKSkH0vZcIfGolkrJMD9tQok58DMbc-RnDvwMkabxa20f_r3iqekR2N8zof3lbYBsigsQG7jQMFXjU3h-wh9CS65w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827665083</pqid></control><display><type>article</type><title>Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>Access via ScienceDirect (Elsevier)</source><creator>Moore, A.C. ; Hennessy, M.G. ; Nogueira, L.P. ; Franks, S.J. ; Taffetani, M. ; Seong, H. ; Kang, Y.K. ; Tan, W.S. ; Miklosic, G. ; El Laham, R. ; Zhou, K. ; Zharova, L. ; King, J.R. ; Wagner, B. ; Haugen, H.J. ; Münch, A. ; Stevens, M.M.</creator><creatorcontrib>Moore, A.C. ; Hennessy, M.G. ; Nogueira, L.P. ; Franks, S.J. ; Taffetani, M. ; Seong, H. ; Kang, Y.K. ; Tan, W.S. ; Miklosic, G. ; El Laham, R. ; Zhou, K. ; Zharova, L. ; King, J.R. ; Wagner, B. ; Haugen, H.J. ; Münch, A. ; Stevens, M.M.</creatorcontrib><description>The role of poroelasticity on the functional performance of articular cartilage has been established in the scientific literature since the 1960s. Despite the extensive knowledge on this topic there remain few attempts to design for poroelasticity and to our knowledge no demonstration of an engineered poroelastic material that approaches the physiological performance. In this paper, we report on the development of an engineered material that begins to approach physiological poroelasticity. We quantify poroelasticity using the fluid load fraction, apply mixture theory to model the material system, and determine cytocompatibility using primary human mesenchymal stem cells. The design approach is based on a fiber reinforced hydrated network and uses routine fabrication methods (electrohydrodynamic deposition) and materials (poly[ɛ-caprolactone] and gelatin) to develop the engineered poroelastic material. This composite material achieved a mean peak fluid load fraction of 68%, displayed consistency with mixture theory, and demonstrated cytocompatibility. This work creates a foundation for designing poroelastic cartilage implants and developing scaffold systems to study chondrocyte mechanobiology and tissue engineering. Poroelasticity drives the functional mechanics of articular cartilage (load bearing and lubrication). In this work we develop the design rationale and approach to produce a poroelastic material, known as a fiber reinforced hydrated network (FiHy™), that begins to approach the native performance of articular cartilage. This is the first engineered material system capable of exceeding isotropic linear poroelastic theory. The framework developed here enables fundamental studies of poroelasticity and the development of translational materials for cartilage repair. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2023.06.015</identifier><identifier>PMID: 37331613</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biphasic mechanics ; Cartilage, Articular ; Chondrocytes ; Electrospinning ; Engineered cartilage ; Humans ; Interpenetrating network ; Multiphasic mechanics ; Poroelastic mechanics ; Soft composite ; Tissue Engineering</subject><ispartof>Acta biomaterialia, 2023-09, Vol.167, p.69-82</ispartof><rights>2023 The Author(s)</rights><rights>Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-7f33d7cbf695761fd42909a47c7dd4bd084358338d93010b40757b8e7799884b3</citedby><cites>FETCH-LOGICAL-c488t-7f33d7cbf695761fd42909a47c7dd4bd084358338d93010b40757b8e7799884b3</cites><orcidid>0000-0002-6690-7233 ; 0000-0001-9833-5033 ; 0000-0003-4109-5926 ; 0000-0002-5718-9719 ; 0000-0002-9469-4351 ; 0000-0002-5928-6256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2023.06.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,3551,26572,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37331613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, A.C.</creatorcontrib><creatorcontrib>Hennessy, M.G.</creatorcontrib><creatorcontrib>Nogueira, L.P.</creatorcontrib><creatorcontrib>Franks, S.J.</creatorcontrib><creatorcontrib>Taffetani, M.</creatorcontrib><creatorcontrib>Seong, H.</creatorcontrib><creatorcontrib>Kang, Y.K.</creatorcontrib><creatorcontrib>Tan, W.S.</creatorcontrib><creatorcontrib>Miklosic, G.</creatorcontrib><creatorcontrib>El Laham, R.</creatorcontrib><creatorcontrib>Zhou, K.</creatorcontrib><creatorcontrib>Zharova, L.</creatorcontrib><creatorcontrib>King, J.R.</creatorcontrib><creatorcontrib>Wagner, B.</creatorcontrib><creatorcontrib>Haugen, H.J.</creatorcontrib><creatorcontrib>Münch, A.</creatorcontrib><creatorcontrib>Stevens, M.M.</creatorcontrib><title>Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The role of poroelasticity on the functional performance of articular cartilage has been established in the scientific literature since the 1960s. Despite the extensive knowledge on this topic there remain few attempts to design for poroelasticity and to our knowledge no demonstration of an engineered poroelastic material that approaches the physiological performance. In this paper, we report on the development of an engineered material that begins to approach physiological poroelasticity. We quantify poroelasticity using the fluid load fraction, apply mixture theory to model the material system, and determine cytocompatibility using primary human mesenchymal stem cells. The design approach is based on a fiber reinforced hydrated network and uses routine fabrication methods (electrohydrodynamic deposition) and materials (poly[ɛ-caprolactone] and gelatin) to develop the engineered poroelastic material. This composite material achieved a mean peak fluid load fraction of 68%, displayed consistency with mixture theory, and demonstrated cytocompatibility. This work creates a foundation for designing poroelastic cartilage implants and developing scaffold systems to study chondrocyte mechanobiology and tissue engineering. Poroelasticity drives the functional mechanics of articular cartilage (load bearing and lubrication). In this work we develop the design rationale and approach to produce a poroelastic material, known as a fiber reinforced hydrated network (FiHy™), that begins to approach the native performance of articular cartilage. This is the first engineered material system capable of exceeding isotropic linear poroelastic theory. The framework developed here enables fundamental studies of poroelasticity and the development of translational materials for cartilage repair. [Display omitted]</description><subject>Biphasic mechanics</subject><subject>Cartilage, Articular</subject><subject>Chondrocytes</subject><subject>Electrospinning</subject><subject>Engineered cartilage</subject><subject>Humans</subject><subject>Interpenetrating network</subject><subject>Multiphasic mechanics</subject><subject>Poroelastic mechanics</subject><subject>Soft composite</subject><subject>Tissue Engineering</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNp9kU1vEzEQhi0EoiXwDxDykcsu_lrbe0FCFQWkSr3Qs-u1ZxuHjR1sp1X_PY7SFrj04hnNxzszfhB6T0lPCZWfNr11dQqpZ4Txnsie0OEFOqVa6U4NUr9svhKsU0TSE_SmlA0hXFOmX6MTrjinkvJTdH0eJsg4Q4hzyg48Xt_7bGtzItS7lH-VlnR2F-p-aWFc14B3KSdYbKnB4S24tY3BFZxmbHMLtbqM3cFd7A28Ra9muxR492BX6Or868-z793F5bcfZ18uOie0rp2aOffKTbMcByXp7AUbyWiFcsp7MXmiBR8059qPnFAyCaIGNWlQahy1FhNfoc9H3d1-2oJ3EGu2i9nlsLX53iQbzP-ZGNbmJt2aNk1RJpsAPgq4HNpl0cSUraFED6y9bNCslXx8mJHT7z2UarahOFgWGyHti2GaKSkH0vZcIfGolkrJMD9tQok58DMbc-RnDvwMkabxa20f_r3iqekR2N8zof3lbYBsigsQG7jQMFXjU3h-wh9CS65w</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Moore, A.C.</creator><creator>Hennessy, M.G.</creator><creator>Nogueira, L.P.</creator><creator>Franks, S.J.</creator><creator>Taffetani, M.</creator><creator>Seong, H.</creator><creator>Kang, Y.K.</creator><creator>Tan, W.S.</creator><creator>Miklosic, G.</creator><creator>El Laham, R.</creator><creator>Zhou, K.</creator><creator>Zharova, L.</creator><creator>King, J.R.</creator><creator>Wagner, B.</creator><creator>Haugen, H.J.</creator><creator>Münch, A.</creator><creator>Stevens, M.M.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6690-7233</orcidid><orcidid>https://orcid.org/0000-0001-9833-5033</orcidid><orcidid>https://orcid.org/0000-0003-4109-5926</orcidid><orcidid>https://orcid.org/0000-0002-5718-9719</orcidid><orcidid>https://orcid.org/0000-0002-9469-4351</orcidid><orcidid>https://orcid.org/0000-0002-5928-6256</orcidid></search><sort><creationdate>20230901</creationdate><title>Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage</title><author>Moore, A.C. ; Hennessy, M.G. ; Nogueira, L.P. ; Franks, S.J. ; Taffetani, M. ; Seong, H. ; Kang, Y.K. ; Tan, W.S. ; Miklosic, G. ; El Laham, R. ; Zhou, K. ; Zharova, L. ; King, J.R. ; Wagner, B. ; Haugen, H.J. ; Münch, A. ; Stevens, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-7f33d7cbf695761fd42909a47c7dd4bd084358338d93010b40757b8e7799884b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biphasic mechanics</topic><topic>Cartilage, Articular</topic><topic>Chondrocytes</topic><topic>Electrospinning</topic><topic>Engineered cartilage</topic><topic>Humans</topic><topic>Interpenetrating network</topic><topic>Multiphasic mechanics</topic><topic>Poroelastic mechanics</topic><topic>Soft composite</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, A.C.</creatorcontrib><creatorcontrib>Hennessy, M.G.</creatorcontrib><creatorcontrib>Nogueira, L.P.</creatorcontrib><creatorcontrib>Franks, S.J.</creatorcontrib><creatorcontrib>Taffetani, M.</creatorcontrib><creatorcontrib>Seong, H.</creatorcontrib><creatorcontrib>Kang, Y.K.</creatorcontrib><creatorcontrib>Tan, W.S.</creatorcontrib><creatorcontrib>Miklosic, G.</creatorcontrib><creatorcontrib>El Laham, R.</creatorcontrib><creatorcontrib>Zhou, K.</creatorcontrib><creatorcontrib>Zharova, L.</creatorcontrib><creatorcontrib>King, J.R.</creatorcontrib><creatorcontrib>Wagner, B.</creatorcontrib><creatorcontrib>Haugen, H.J.</creatorcontrib><creatorcontrib>Münch, A.</creatorcontrib><creatorcontrib>Stevens, M.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, A.C.</au><au>Hennessy, M.G.</au><au>Nogueira, L.P.</au><au>Franks, S.J.</au><au>Taffetani, M.</au><au>Seong, H.</au><au>Kang, Y.K.</au><au>Tan, W.S.</au><au>Miklosic, G.</au><au>El Laham, R.</au><au>Zhou, K.</au><au>Zharova, L.</au><au>King, J.R.</au><au>Wagner, B.</au><au>Haugen, H.J.</au><au>Münch, A.</au><au>Stevens, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>167</volume><spage>69</spage><epage>82</epage><pages>69-82</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The role of poroelasticity on the functional performance of articular cartilage has been established in the scientific literature since the 1960s. Despite the extensive knowledge on this topic there remain few attempts to design for poroelasticity and to our knowledge no demonstration of an engineered poroelastic material that approaches the physiological performance. In this paper, we report on the development of an engineered material that begins to approach physiological poroelasticity. We quantify poroelasticity using the fluid load fraction, apply mixture theory to model the material system, and determine cytocompatibility using primary human mesenchymal stem cells. The design approach is based on a fiber reinforced hydrated network and uses routine fabrication methods (electrohydrodynamic deposition) and materials (poly[ɛ-caprolactone] and gelatin) to develop the engineered poroelastic material. This composite material achieved a mean peak fluid load fraction of 68%, displayed consistency with mixture theory, and demonstrated cytocompatibility. This work creates a foundation for designing poroelastic cartilage implants and developing scaffold systems to study chondrocyte mechanobiology and tissue engineering. Poroelasticity drives the functional mechanics of articular cartilage (load bearing and lubrication). In this work we develop the design rationale and approach to produce a poroelastic material, known as a fiber reinforced hydrated network (FiHy™), that begins to approach the native performance of articular cartilage. This is the first engineered material system capable of exceeding isotropic linear poroelastic theory. The framework developed here enables fundamental studies of poroelasticity and the development of translational materials for cartilage repair. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37331613</pmid><doi>10.1016/j.actbio.2023.06.015</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6690-7233</orcidid><orcidid>https://orcid.org/0000-0001-9833-5033</orcidid><orcidid>https://orcid.org/0000-0003-4109-5926</orcidid><orcidid>https://orcid.org/0000-0002-5718-9719</orcidid><orcidid>https://orcid.org/0000-0002-9469-4351</orcidid><orcidid>https://orcid.org/0000-0002-5928-6256</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2023-09, Vol.167, p.69-82
issn 1742-7061
1878-7568
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7617126
source MEDLINE; NORA - Norwegian Open Research Archives; Access via ScienceDirect (Elsevier)
subjects Biphasic mechanics
Cartilage, Articular
Chondrocytes
Electrospinning
Engineered cartilage
Humans
Interpenetrating network
Multiphasic mechanics
Poroelastic mechanics
Soft composite
Tissue Engineering
title Fiber reinforced hydrated networks recapitulate the poroelastic mechanics of articular cartilage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20reinforced%20hydrated%20networks%20recapitulate%20the%20poroelastic%20mechanics%20of%20articular%20cartilage&rft.jtitle=Acta%20biomaterialia&rft.au=Moore,%20A.C.&rft.date=2023-09-01&rft.volume=167&rft.spage=69&rft.epage=82&rft.pages=69-82&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2023.06.015&rft_dat=%3Cproquest_pubme%3E2827665083%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827665083&rft_id=info:pmid/37331613&rft_els_id=S1742706123003409&rfr_iscdi=true