Structural basis of a small molecule targeting RNA for a specific splicing correction
Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the dr...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2019-12, Vol.15 (12), p.1191-1198 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1198 |
---|---|
container_issue | 12 |
container_start_page | 1191 |
container_title | Nature chemical biology |
container_volume | 15 |
creator | Campagne, Sébastien Boigner, Sarah Rüdisser, Simon Moursy, Ahmed Gillioz, Laurent Knörlein, Anna Hall, Jonathan Ratni, Hasane Cléry, Antoine Allain, Frédéric H.-T. |
description | Splicing modifiers promoting
SMN2
exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are
SMN2
exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5ʹ splice site of
SMN2
exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5ʹ splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon–intron junction and converts the weak 5ʹ splice site of
SMN2
exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5ʹ splice site bulge repair.
NMR-based structural analysis of the RNA duplex formed by
SMN2
exon 7 and U1 snRNA reveals that the splicing modifier SMN-C5 pulls the bulged adenine into the RNA helix base stack and transforms the weak 5ʹ splice site of
SMN2
exon 7 into a stronger one. |
doi_str_mv | 10.1038/s41589-019-0384-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7617061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307729449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-36980ff070a443c22b8d2a3940c8fbb74c39c34fabe9e9eb93546492838f5f9c3</originalsourceid><addsrcrecordid>eNp1kV1LHTEQhkNpqVb7A3pTFrzRi9V8f9wIB9FaOFRo9TpkY3KMZDenya7Qf98sa0-rUELIkPeZmUxeAD4heIogkWeFIiZVC1HdRNKWvQH7iDHcUsrV213M4B74UMojhIRzJN-DPYI44RSrfXD3Y8yTHadsYtOZEkqTfGOa0psYmz5FZ6fomtHkjRvDsGm-f1s1PuUZ2TobfLA1iMHOmk05OzuGNByCd97E4j4-nwfg7ury9uK6Xd98-XqxWreWYTG2hCsJvYcCGkqJxbiT99gQRaGVvusEtURZQr3pnKqrU4RRThWWRHrmq3QAzpe626nr3b11w1gH0dscepN_6WSCfqkM4UFv0pMWHAnIUS1wshR4eJV2vVrr-Q5SJjhG5Glmj5-b5fRzcmXUfSjWxWgGl6aiMYFCYEWpqujRK_QxTXmoX1Gp6gpUQrFKoYWyOZWSnd-9AEE9G6wXg3U1WM8G6znn878T7zL-OFoBvAClSsPG5b-t_1_1N2g9sEU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315509795</pqid></control><display><type>article</type><title>Structural basis of a small molecule targeting RNA for a specific splicing correction</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Campagne, Sébastien ; Boigner, Sarah ; Rüdisser, Simon ; Moursy, Ahmed ; Gillioz, Laurent ; Knörlein, Anna ; Hall, Jonathan ; Ratni, Hasane ; Cléry, Antoine ; Allain, Frédéric H.-T.</creator><creatorcontrib>Campagne, Sébastien ; Boigner, Sarah ; Rüdisser, Simon ; Moursy, Ahmed ; Gillioz, Laurent ; Knörlein, Anna ; Hall, Jonathan ; Ratni, Hasane ; Cléry, Antoine ; Allain, Frédéric H.-T.</creatorcontrib><description>Splicing modifiers promoting
SMN2
exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are
SMN2
exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5ʹ splice site of
SMN2
exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5ʹ splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon–intron junction and converts the weak 5ʹ splice site of
SMN2
exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5ʹ splice site bulge repair.
NMR-based structural analysis of the RNA duplex formed by
SMN2
exon 7 and U1 snRNA reveals that the splicing modifier SMN-C5 pulls the bulged adenine into the RNA helix base stack and transforms the weak 5ʹ splice site of
SMN2
exon 7 into a stronger one.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-019-0384-5</identifier><identifier>PMID: 31636429</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/535/878 ; 631/92/500 ; 631/92/555 ; Adenine ; Alternative splicing ; Atrophy ; Binding sites ; Biochemical Engineering ; Biochemistry ; Biology ; Bioorganic Chemistry ; Bulging ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Clinical trials ; Drug dosages ; Genomes ; Life Sciences ; Molecular Conformation ; Muscular Atrophy, Spinal - metabolism ; Neuromuscular diseases ; Proteins ; Recognition ; Ribonucleic acid ; Ribonucleoprotein, U1 Small Nuclear - chemistry ; Ribonucleoproteins (small nuclear) ; RNA ; RNA - chemistry ; RNA Splicing ; SMN protein ; Spinal muscular atrophy ; Splicing</subject><ispartof>Nature chemical biology, 2019-12, Vol.15 (12), p.1191-1198</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>Copyright Nature Publishing Group Dec 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-36980ff070a443c22b8d2a3940c8fbb74c39c34fabe9e9eb93546492838f5f9c3</citedby><cites>FETCH-LOGICAL-c527t-36980ff070a443c22b8d2a3940c8fbb74c39c34fabe9e9eb93546492838f5f9c3</cites><orcidid>0000-0002-2131-6237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-019-0384-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-019-0384-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31636429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04576213$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Campagne, Sébastien</creatorcontrib><creatorcontrib>Boigner, Sarah</creatorcontrib><creatorcontrib>Rüdisser, Simon</creatorcontrib><creatorcontrib>Moursy, Ahmed</creatorcontrib><creatorcontrib>Gillioz, Laurent</creatorcontrib><creatorcontrib>Knörlein, Anna</creatorcontrib><creatorcontrib>Hall, Jonathan</creatorcontrib><creatorcontrib>Ratni, Hasane</creatorcontrib><creatorcontrib>Cléry, Antoine</creatorcontrib><creatorcontrib>Allain, Frédéric H.-T.</creatorcontrib><title>Structural basis of a small molecule targeting RNA for a specific splicing correction</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Splicing modifiers promoting
SMN2
exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are
SMN2
exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5ʹ splice site of
SMN2
exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5ʹ splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon–intron junction and converts the weak 5ʹ splice site of
SMN2
exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5ʹ splice site bulge repair.
NMR-based structural analysis of the RNA duplex formed by
SMN2
exon 7 and U1 snRNA reveals that the splicing modifier SMN-C5 pulls the bulged adenine into the RNA helix base stack and transforms the weak 5ʹ splice site of
SMN2
exon 7 into a stronger one.</description><subject>631/535/878</subject><subject>631/92/500</subject><subject>631/92/555</subject><subject>Adenine</subject><subject>Alternative splicing</subject><subject>Atrophy</subject><subject>Binding sites</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Bioorganic Chemistry</subject><subject>Bulging</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Clinical trials</subject><subject>Drug dosages</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Molecular Conformation</subject><subject>Muscular Atrophy, Spinal - metabolism</subject><subject>Neuromuscular diseases</subject><subject>Proteins</subject><subject>Recognition</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoprotein, U1 Small Nuclear - chemistry</subject><subject>Ribonucleoproteins (small nuclear)</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA Splicing</subject><subject>SMN protein</subject><subject>Spinal muscular atrophy</subject><subject>Splicing</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kV1LHTEQhkNpqVb7A3pTFrzRi9V8f9wIB9FaOFRo9TpkY3KMZDenya7Qf98sa0-rUELIkPeZmUxeAD4heIogkWeFIiZVC1HdRNKWvQH7iDHcUsrV213M4B74UMojhIRzJN-DPYI44RSrfXD3Y8yTHadsYtOZEkqTfGOa0psYmz5FZ6fomtHkjRvDsGm-f1s1PuUZ2TobfLA1iMHOmk05OzuGNByCd97E4j4-nwfg7ury9uK6Xd98-XqxWreWYTG2hCsJvYcCGkqJxbiT99gQRaGVvusEtURZQr3pnKqrU4RRThWWRHrmq3QAzpe626nr3b11w1gH0dscepN_6WSCfqkM4UFv0pMWHAnIUS1wshR4eJV2vVrr-Q5SJjhG5Glmj5-b5fRzcmXUfSjWxWgGl6aiMYFCYEWpqujRK_QxTXmoX1Gp6gpUQrFKoYWyOZWSnd-9AEE9G6wXg3U1WM8G6znn878T7zL-OFoBvAClSsPG5b-t_1_1N2g9sEU</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Campagne, Sébastien</creator><creator>Boigner, Sarah</creator><creator>Rüdisser, Simon</creator><creator>Moursy, Ahmed</creator><creator>Gillioz, Laurent</creator><creator>Knörlein, Anna</creator><creator>Hall, Jonathan</creator><creator>Ratni, Hasane</creator><creator>Cléry, Antoine</creator><creator>Allain, Frédéric H.-T.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid></search><sort><creationdate>20191201</creationdate><title>Structural basis of a small molecule targeting RNA for a specific splicing correction</title><author>Campagne, Sébastien ; Boigner, Sarah ; Rüdisser, Simon ; Moursy, Ahmed ; Gillioz, Laurent ; Knörlein, Anna ; Hall, Jonathan ; Ratni, Hasane ; Cléry, Antoine ; Allain, Frédéric H.-T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-36980ff070a443c22b8d2a3940c8fbb74c39c34fabe9e9eb93546492838f5f9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/535/878</topic><topic>631/92/500</topic><topic>631/92/555</topic><topic>Adenine</topic><topic>Alternative splicing</topic><topic>Atrophy</topic><topic>Binding sites</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Bioorganic Chemistry</topic><topic>Bulging</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Clinical trials</topic><topic>Drug dosages</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Molecular Conformation</topic><topic>Muscular Atrophy, Spinal - metabolism</topic><topic>Neuromuscular diseases</topic><topic>Proteins</topic><topic>Recognition</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoprotein, U1 Small Nuclear - chemistry</topic><topic>Ribonucleoproteins (small nuclear)</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA Splicing</topic><topic>SMN protein</topic><topic>Spinal muscular atrophy</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campagne, Sébastien</creatorcontrib><creatorcontrib>Boigner, Sarah</creatorcontrib><creatorcontrib>Rüdisser, Simon</creatorcontrib><creatorcontrib>Moursy, Ahmed</creatorcontrib><creatorcontrib>Gillioz, Laurent</creatorcontrib><creatorcontrib>Knörlein, Anna</creatorcontrib><creatorcontrib>Hall, Jonathan</creatorcontrib><creatorcontrib>Ratni, Hasane</creatorcontrib><creatorcontrib>Cléry, Antoine</creatorcontrib><creatorcontrib>Allain, Frédéric H.-T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campagne, Sébastien</au><au>Boigner, Sarah</au><au>Rüdisser, Simon</au><au>Moursy, Ahmed</au><au>Gillioz, Laurent</au><au>Knörlein, Anna</au><au>Hall, Jonathan</au><au>Ratni, Hasane</au><au>Cléry, Antoine</au><au>Allain, Frédéric H.-T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of a small molecule targeting RNA for a specific splicing correction</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>15</volume><issue>12</issue><spage>1191</spage><epage>1198</epage><pages>1191-1198</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Splicing modifiers promoting
SMN2
exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are
SMN2
exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5ʹ splice site of
SMN2
exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5ʹ splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon–intron junction and converts the weak 5ʹ splice site of
SMN2
exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5ʹ splice site bulge repair.
NMR-based structural analysis of the RNA duplex formed by
SMN2
exon 7 and U1 snRNA reveals that the splicing modifier SMN-C5 pulls the bulged adenine into the RNA helix base stack and transforms the weak 5ʹ splice site of
SMN2
exon 7 into a stronger one.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31636429</pmid><doi>10.1038/s41589-019-0384-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2019-12, Vol.15 (12), p.1191-1198 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7617061 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/535/878 631/92/500 631/92/555 Adenine Alternative splicing Atrophy Binding sites Biochemical Engineering Biochemistry Biology Bioorganic Chemistry Bulging Cell Biology Chemistry Chemistry and Materials Science Chemistry/Food Science Clinical trials Drug dosages Genomes Life Sciences Molecular Conformation Muscular Atrophy, Spinal - metabolism Neuromuscular diseases Proteins Recognition Ribonucleic acid Ribonucleoprotein, U1 Small Nuclear - chemistry Ribonucleoproteins (small nuclear) RNA RNA - chemistry RNA Splicing SMN protein Spinal muscular atrophy Splicing |
title | Structural basis of a small molecule targeting RNA for a specific splicing correction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20a%20small%20molecule%20targeting%20RNA%20for%20a%20specific%20splicing%20correction&rft.jtitle=Nature%20chemical%20biology&rft.au=Campagne,%20S%C3%A9bastien&rft.date=2019-12-01&rft.volume=15&rft.issue=12&rft.spage=1191&rft.epage=1198&rft.pages=1191-1198&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-019-0384-5&rft_dat=%3Cproquest_pubme%3E2307729449%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315509795&rft_id=info:pmid/31636429&rfr_iscdi=true |