Structural basis of a small molecule targeting RNA for a specific splicing correction

Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the dr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2019-12, Vol.15 (12), p.1191-1198
Hauptverfasser: Campagne, Sébastien, Boigner, Sarah, Rüdisser, Simon, Moursy, Ahmed, Gillioz, Laurent, Knörlein, Anna, Hall, Jonathan, Ratni, Hasane, Cléry, Antoine, Allain, Frédéric H.-T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1198
container_issue 12
container_start_page 1191
container_title Nature chemical biology
container_volume 15
creator Campagne, Sébastien
Boigner, Sarah
Rüdisser, Simon
Moursy, Ahmed
Gillioz, Laurent
Knörlein, Anna
Hall, Jonathan
Ratni, Hasane
Cléry, Antoine
Allain, Frédéric H.-T.
description Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5ʹ splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5ʹ splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon–intron junction and converts the weak 5ʹ splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5ʹ splice site bulge repair. NMR-based structural analysis of the RNA duplex formed by SMN2 exon 7 and U1 snRNA reveals that the splicing modifier SMN-C5 pulls the bulged adenine into the RNA helix base stack and transforms the weak 5ʹ splice site of SMN2 exon 7 into a stronger one.
doi_str_mv 10.1038/s41589-019-0384-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7617061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307729449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-36980ff070a443c22b8d2a3940c8fbb74c39c34fabe9e9eb93546492838f5f9c3</originalsourceid><addsrcrecordid>eNp1kV1LHTEQhkNpqVb7A3pTFrzRi9V8f9wIB9FaOFRo9TpkY3KMZDenya7Qf98sa0-rUELIkPeZmUxeAD4heIogkWeFIiZVC1HdRNKWvQH7iDHcUsrV213M4B74UMojhIRzJN-DPYI44RSrfXD3Y8yTHadsYtOZEkqTfGOa0psYmz5FZ6fomtHkjRvDsGm-f1s1PuUZ2TobfLA1iMHOmk05OzuGNByCd97E4j4-nwfg7ury9uK6Xd98-XqxWreWYTG2hCsJvYcCGkqJxbiT99gQRaGVvusEtURZQr3pnKqrU4RRThWWRHrmq3QAzpe626nr3b11w1gH0dscepN_6WSCfqkM4UFv0pMWHAnIUS1wshR4eJV2vVrr-Q5SJjhG5Glmj5-b5fRzcmXUfSjWxWgGl6aiMYFCYEWpqujRK_QxTXmoX1Gp6gpUQrFKoYWyOZWSnd-9AEE9G6wXg3U1WM8G6znn878T7zL-OFoBvAClSsPG5b-t_1_1N2g9sEU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315509795</pqid></control><display><type>article</type><title>Structural basis of a small molecule targeting RNA for a specific splicing correction</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Campagne, Sébastien ; Boigner, Sarah ; Rüdisser, Simon ; Moursy, Ahmed ; Gillioz, Laurent ; Knörlein, Anna ; Hall, Jonathan ; Ratni, Hasane ; Cléry, Antoine ; Allain, Frédéric H.-T.</creator><creatorcontrib>Campagne, Sébastien ; Boigner, Sarah ; Rüdisser, Simon ; Moursy, Ahmed ; Gillioz, Laurent ; Knörlein, Anna ; Hall, Jonathan ; Ratni, Hasane ; Cléry, Antoine ; Allain, Frédéric H.-T.</creatorcontrib><description>Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5ʹ splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5ʹ splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon–intron junction and converts the weak 5ʹ splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5ʹ splice site bulge repair. NMR-based structural analysis of the RNA duplex formed by SMN2 exon 7 and U1 snRNA reveals that the splicing modifier SMN-C5 pulls the bulged adenine into the RNA helix base stack and transforms the weak 5ʹ splice site of SMN2 exon 7 into a stronger one.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-019-0384-5</identifier><identifier>PMID: 31636429</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/535/878 ; 631/92/500 ; 631/92/555 ; Adenine ; Alternative splicing ; Atrophy ; Binding sites ; Biochemical Engineering ; Biochemistry ; Biology ; Bioorganic Chemistry ; Bulging ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Clinical trials ; Drug dosages ; Genomes ; Life Sciences ; Molecular Conformation ; Muscular Atrophy, Spinal - metabolism ; Neuromuscular diseases ; Proteins ; Recognition ; Ribonucleic acid ; Ribonucleoprotein, U1 Small Nuclear - chemistry ; Ribonucleoproteins (small nuclear) ; RNA ; RNA - chemistry ; RNA Splicing ; SMN protein ; Spinal muscular atrophy ; Splicing</subject><ispartof>Nature chemical biology, 2019-12, Vol.15 (12), p.1191-1198</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>Copyright Nature Publishing Group Dec 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-36980ff070a443c22b8d2a3940c8fbb74c39c34fabe9e9eb93546492838f5f9c3</citedby><cites>FETCH-LOGICAL-c527t-36980ff070a443c22b8d2a3940c8fbb74c39c34fabe9e9eb93546492838f5f9c3</cites><orcidid>0000-0002-2131-6237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-019-0384-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-019-0384-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31636429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04576213$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Campagne, Sébastien</creatorcontrib><creatorcontrib>Boigner, Sarah</creatorcontrib><creatorcontrib>Rüdisser, Simon</creatorcontrib><creatorcontrib>Moursy, Ahmed</creatorcontrib><creatorcontrib>Gillioz, Laurent</creatorcontrib><creatorcontrib>Knörlein, Anna</creatorcontrib><creatorcontrib>Hall, Jonathan</creatorcontrib><creatorcontrib>Ratni, Hasane</creatorcontrib><creatorcontrib>Cléry, Antoine</creatorcontrib><creatorcontrib>Allain, Frédéric H.-T.</creatorcontrib><title>Structural basis of a small molecule targeting RNA for a specific splicing correction</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5ʹ splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5ʹ splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon–intron junction and converts the weak 5ʹ splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5ʹ splice site bulge repair. NMR-based structural analysis of the RNA duplex formed by SMN2 exon 7 and U1 snRNA reveals that the splicing modifier SMN-C5 pulls the bulged adenine into the RNA helix base stack and transforms the weak 5ʹ splice site of SMN2 exon 7 into a stronger one.</description><subject>631/535/878</subject><subject>631/92/500</subject><subject>631/92/555</subject><subject>Adenine</subject><subject>Alternative splicing</subject><subject>Atrophy</subject><subject>Binding sites</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Bioorganic Chemistry</subject><subject>Bulging</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Clinical trials</subject><subject>Drug dosages</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Molecular Conformation</subject><subject>Muscular Atrophy, Spinal - metabolism</subject><subject>Neuromuscular diseases</subject><subject>Proteins</subject><subject>Recognition</subject><subject>Ribonucleic acid</subject><subject>Ribonucleoprotein, U1 Small Nuclear - chemistry</subject><subject>Ribonucleoproteins (small nuclear)</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA Splicing</subject><subject>SMN protein</subject><subject>Spinal muscular atrophy</subject><subject>Splicing</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kV1LHTEQhkNpqVb7A3pTFrzRi9V8f9wIB9FaOFRo9TpkY3KMZDenya7Qf98sa0-rUELIkPeZmUxeAD4heIogkWeFIiZVC1HdRNKWvQH7iDHcUsrV213M4B74UMojhIRzJN-DPYI44RSrfXD3Y8yTHadsYtOZEkqTfGOa0psYmz5FZ6fomtHkjRvDsGm-f1s1PuUZ2TobfLA1iMHOmk05OzuGNByCd97E4j4-nwfg7ury9uK6Xd98-XqxWreWYTG2hCsJvYcCGkqJxbiT99gQRaGVvusEtURZQr3pnKqrU4RRThWWRHrmq3QAzpe626nr3b11w1gH0dscepN_6WSCfqkM4UFv0pMWHAnIUS1wshR4eJV2vVrr-Q5SJjhG5Glmj5-b5fRzcmXUfSjWxWgGl6aiMYFCYEWpqujRK_QxTXmoX1Gp6gpUQrFKoYWyOZWSnd-9AEE9G6wXg3U1WM8G6znn878T7zL-OFoBvAClSsPG5b-t_1_1N2g9sEU</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Campagne, Sébastien</creator><creator>Boigner, Sarah</creator><creator>Rüdisser, Simon</creator><creator>Moursy, Ahmed</creator><creator>Gillioz, Laurent</creator><creator>Knörlein, Anna</creator><creator>Hall, Jonathan</creator><creator>Ratni, Hasane</creator><creator>Cléry, Antoine</creator><creator>Allain, Frédéric H.-T.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid></search><sort><creationdate>20191201</creationdate><title>Structural basis of a small molecule targeting RNA for a specific splicing correction</title><author>Campagne, Sébastien ; Boigner, Sarah ; Rüdisser, Simon ; Moursy, Ahmed ; Gillioz, Laurent ; Knörlein, Anna ; Hall, Jonathan ; Ratni, Hasane ; Cléry, Antoine ; Allain, Frédéric H.-T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-36980ff070a443c22b8d2a3940c8fbb74c39c34fabe9e9eb93546492838f5f9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/535/878</topic><topic>631/92/500</topic><topic>631/92/555</topic><topic>Adenine</topic><topic>Alternative splicing</topic><topic>Atrophy</topic><topic>Binding sites</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Bioorganic Chemistry</topic><topic>Bulging</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Clinical trials</topic><topic>Drug dosages</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Molecular Conformation</topic><topic>Muscular Atrophy, Spinal - metabolism</topic><topic>Neuromuscular diseases</topic><topic>Proteins</topic><topic>Recognition</topic><topic>Ribonucleic acid</topic><topic>Ribonucleoprotein, U1 Small Nuclear - chemistry</topic><topic>Ribonucleoproteins (small nuclear)</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA Splicing</topic><topic>SMN protein</topic><topic>Spinal muscular atrophy</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campagne, Sébastien</creatorcontrib><creatorcontrib>Boigner, Sarah</creatorcontrib><creatorcontrib>Rüdisser, Simon</creatorcontrib><creatorcontrib>Moursy, Ahmed</creatorcontrib><creatorcontrib>Gillioz, Laurent</creatorcontrib><creatorcontrib>Knörlein, Anna</creatorcontrib><creatorcontrib>Hall, Jonathan</creatorcontrib><creatorcontrib>Ratni, Hasane</creatorcontrib><creatorcontrib>Cléry, Antoine</creatorcontrib><creatorcontrib>Allain, Frédéric H.-T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campagne, Sébastien</au><au>Boigner, Sarah</au><au>Rüdisser, Simon</au><au>Moursy, Ahmed</au><au>Gillioz, Laurent</au><au>Knörlein, Anna</au><au>Hall, Jonathan</au><au>Ratni, Hasane</au><au>Cléry, Antoine</au><au>Allain, Frédéric H.-T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of a small molecule targeting RNA for a specific splicing correction</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>15</volume><issue>12</issue><spage>1191</spage><epage>1198</epage><pages>1191-1198</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5ʹ splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5ʹ splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon–intron junction and converts the weak 5ʹ splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5ʹ splice site bulge repair. NMR-based structural analysis of the RNA duplex formed by SMN2 exon 7 and U1 snRNA reveals that the splicing modifier SMN-C5 pulls the bulged adenine into the RNA helix base stack and transforms the weak 5ʹ splice site of SMN2 exon 7 into a stronger one.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31636429</pmid><doi>10.1038/s41589-019-0384-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2131-6237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2019-12, Vol.15 (12), p.1191-1198
issn 1552-4450
1552-4469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7617061
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/535/878
631/92/500
631/92/555
Adenine
Alternative splicing
Atrophy
Binding sites
Biochemical Engineering
Biochemistry
Biology
Bioorganic Chemistry
Bulging
Cell Biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Clinical trials
Drug dosages
Genomes
Life Sciences
Molecular Conformation
Muscular Atrophy, Spinal - metabolism
Neuromuscular diseases
Proteins
Recognition
Ribonucleic acid
Ribonucleoprotein, U1 Small Nuclear - chemistry
Ribonucleoproteins (small nuclear)
RNA
RNA - chemistry
RNA Splicing
SMN protein
Spinal muscular atrophy
Splicing
title Structural basis of a small molecule targeting RNA for a specific splicing correction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20a%20small%20molecule%20targeting%20RNA%20for%20a%20specific%20splicing%20correction&rft.jtitle=Nature%20chemical%20biology&rft.au=Campagne,%20S%C3%A9bastien&rft.date=2019-12-01&rft.volume=15&rft.issue=12&rft.spage=1191&rft.epage=1198&rft.pages=1191-1198&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-019-0384-5&rft_dat=%3Cproquest_pubme%3E2307729449%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315509795&rft_id=info:pmid/31636429&rfr_iscdi=true