Rigid helical-like assemblies from a self-aggregating tripeptide
The structural versatility, biocompatibility and dynamic range of the mechanical properties of protein materials have been explored in functional biomaterials for a wide array of biotechnology applications. Typically, such materials are made from self-assembled peptides with a predominant β-sheet st...
Gespeichert in:
Veröffentlicht in: | Nature materials 2019-05, Vol.18 (5), p.503-509 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structural versatility, biocompatibility and dynamic range of the mechanical properties of protein materials have been explored in functional biomaterials for a wide array of biotechnology applications. Typically, such materials are made from self-assembled peptides with a predominant β-sheet structure, a common structural motif in silk and amyloid fibrils. However, collagen, the most abundant protein in mammals, is based on a helical arrangement. Here we show that Pro-Phe-Phe, the most aggregation-prone tripeptide of natural amino acids, assembles into a helical-like sheet that is stabilized by the dry hydrophobic interfaces of Phe residues. This architecture resembles that of the functional PSMα3 amyloid, highlighting the role of dry helical interfaces as a core structural motif in amyloids. Proline replacement by hydroxyproline, a major constituent of collagen, generates minimal helical-like assemblies with enhanced mechanical rigidity. These results establish a framework for designing functional biomaterials based on ultrashort helical protein elements.
The structural foundation of self-assembled peptide materials is typically the β-sheet. Here the authors describe peptides made of three natural amino acids that self-assemble into helical-like superstructures with enhanced mechanical rigidity. |
---|---|
ISSN: | 1476-1122 1476-4660 1476-4660 |
DOI: | 10.1038/s41563-019-0343-2 |