Silent zero TE MR neuroimaging: Current state-of-the-art and future directions
[Display omitted] •Describes why ZTE pulse sequences are silent.•How to generate strong contrast with ZTE via magnetisation preparation.•Examples of PD, T1, T2, T2*, MT, MRA and DWI contrast.•Reviews the benefits of silent ZTE acquisitions in clinical applications. Magnetic Resonance Imaging (MRI) s...
Gespeichert in:
Veröffentlicht in: | Progress in nuclear magnetic resonance spectroscopy 2021-04, Vol.123, p.73-93 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | |
container_start_page | 73 |
container_title | Progress in nuclear magnetic resonance spectroscopy |
container_volume | 123 |
creator | Ljungberg, Emil Damestani, Nikou L. Wood, Tobias C. Lythgoe, David J. Zelaya, Fernando Williams, Steven C.R. Solana, Ana Beatriz Barker, Gareth J. Wiesinger, Florian |
description | [Display omitted]
•Describes why ZTE pulse sequences are silent.•How to generate strong contrast with ZTE via magnetisation preparation.•Examples of PD, T1, T2, T2*, MT, MRA and DWI contrast.•Reviews the benefits of silent ZTE acquisitions in clinical applications.
Magnetic Resonance Imaging (MRI) scanners produce loud acoustic noise originating from vibrational Lorentz forces induced by rapidly changing currents in the magnetic field gradient coils. Using zero echo time (ZTE) MRI pulse sequences, gradient switching can be reduced to a minimum, which enables near silent operation.Besides silent MRI, ZTE offers further interesting characteristics, including a nominal echo time of TE = 0 (thus capturing short-lived signals from MR tissues which are otherwise MR-invisible), 3D radial sampling (providing motion robustness), and ultra-short repetition times (providing fast and efficient scanning).In this work we describe the main concepts behind ZTE imaging with a focus on conceptual understanding of the imaging sequences, relevant acquisition parameters, commonly observed image artefacts, and image contrasts. We will further describe a range of methods for anatomical and functional neuroimaging, together with recommendations for successful implementation. |
doi_str_mv | 10.1016/j.pnmrs.2021.03.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7616227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S007965652100011X</els_id><sourcerecordid>2536798917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-921f5937ec17a719e77af76f5797934ca5e47e1d4a599b6c2af775bcdf45c0cf3</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxS0EoqHwCZDQHrns4j9rT4wEEopaQCqtBOVsOd5x6mhjB9tbCT59N6RUcOE0h_nNm6f3CHnJaMcoU2-23T7ucuk45ayjoqOUPyILtgTRCkHZY7KgFHSrpJIn5FkpW0qpVByekhPRU1hKsVyQy29hxFibX5hTc33WfPnaRJxyCju7CXHztllNOR-AUm3FNvm23mBrc21sHBo_1SljM4SMroYUy3PyxNux4Iv7eUq-n59drz61F1cfP68-XLSul7q2mjMvtQB0DCwwjQDWg_ISNGjROyuxB2RDb6XWa-X4vAW5doPvpaPOi1Py_qi7n9Y7HNzsMNvR7PPsO_80yQbz7yaGG7NJtwYUU5zDLPD6XiCnHxOWanahOBxHGzFNxXApFOilZgdUHFGXUykZ_cMbRs2hCbM1v5swhyYMFWZuYr569bfDh5s_0c_AuyOAc063AbMpLmB0eEzTDCn898EdwOOcow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536798917</pqid></control><display><type>article</type><title>Silent zero TE MR neuroimaging: Current state-of-the-art and future directions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ljungberg, Emil ; Damestani, Nikou L. ; Wood, Tobias C. ; Lythgoe, David J. ; Zelaya, Fernando ; Williams, Steven C.R. ; Solana, Ana Beatriz ; Barker, Gareth J. ; Wiesinger, Florian</creator><creatorcontrib>Ljungberg, Emil ; Damestani, Nikou L. ; Wood, Tobias C. ; Lythgoe, David J. ; Zelaya, Fernando ; Williams, Steven C.R. ; Solana, Ana Beatriz ; Barker, Gareth J. ; Wiesinger, Florian</creatorcontrib><description>[Display omitted]
•Describes why ZTE pulse sequences are silent.•How to generate strong contrast with ZTE via magnetisation preparation.•Examples of PD, T1, T2, T2*, MT, MRA and DWI contrast.•Reviews the benefits of silent ZTE acquisitions in clinical applications.
Magnetic Resonance Imaging (MRI) scanners produce loud acoustic noise originating from vibrational Lorentz forces induced by rapidly changing currents in the magnetic field gradient coils. Using zero echo time (ZTE) MRI pulse sequences, gradient switching can be reduced to a minimum, which enables near silent operation.Besides silent MRI, ZTE offers further interesting characteristics, including a nominal echo time of TE = 0 (thus capturing short-lived signals from MR tissues which are otherwise MR-invisible), 3D radial sampling (providing motion robustness), and ultra-short repetition times (providing fast and efficient scanning).In this work we describe the main concepts behind ZTE imaging with a focus on conceptual understanding of the imaging sequences, relevant acquisition parameters, commonly observed image artefacts, and image contrasts. We will further describe a range of methods for anatomical and functional neuroimaging, together with recommendations for successful implementation.</description><identifier>ISSN: 0079-6565</identifier><identifier>ISSN: 1873-3301</identifier><identifier>EISSN: 1873-3301</identifier><identifier>DOI: 10.1016/j.pnmrs.2021.03.002</identifier><identifier>PMID: 34078538</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Neuroimaging ; Silent MRI ; Zero Echo Time (ZTE)</subject><ispartof>Progress in nuclear magnetic resonance spectroscopy, 2021-04, Vol.123, p.73-93</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-921f5937ec17a719e77af76f5797934ca5e47e1d4a599b6c2af775bcdf45c0cf3</citedby><cites>FETCH-LOGICAL-c459t-921f5937ec17a719e77af76f5797934ca5e47e1d4a599b6c2af775bcdf45c0cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pnmrs.2021.03.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34078538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ljungberg, Emil</creatorcontrib><creatorcontrib>Damestani, Nikou L.</creatorcontrib><creatorcontrib>Wood, Tobias C.</creatorcontrib><creatorcontrib>Lythgoe, David J.</creatorcontrib><creatorcontrib>Zelaya, Fernando</creatorcontrib><creatorcontrib>Williams, Steven C.R.</creatorcontrib><creatorcontrib>Solana, Ana Beatriz</creatorcontrib><creatorcontrib>Barker, Gareth J.</creatorcontrib><creatorcontrib>Wiesinger, Florian</creatorcontrib><title>Silent zero TE MR neuroimaging: Current state-of-the-art and future directions</title><title>Progress in nuclear magnetic resonance spectroscopy</title><addtitle>Prog Nucl Magn Reson Spectrosc</addtitle><description>[Display omitted]
•Describes why ZTE pulse sequences are silent.•How to generate strong contrast with ZTE via magnetisation preparation.•Examples of PD, T1, T2, T2*, MT, MRA and DWI contrast.•Reviews the benefits of silent ZTE acquisitions in clinical applications.
Magnetic Resonance Imaging (MRI) scanners produce loud acoustic noise originating from vibrational Lorentz forces induced by rapidly changing currents in the magnetic field gradient coils. Using zero echo time (ZTE) MRI pulse sequences, gradient switching can be reduced to a minimum, which enables near silent operation.Besides silent MRI, ZTE offers further interesting characteristics, including a nominal echo time of TE = 0 (thus capturing short-lived signals from MR tissues which are otherwise MR-invisible), 3D radial sampling (providing motion robustness), and ultra-short repetition times (providing fast and efficient scanning).In this work we describe the main concepts behind ZTE imaging with a focus on conceptual understanding of the imaging sequences, relevant acquisition parameters, commonly observed image artefacts, and image contrasts. We will further describe a range of methods for anatomical and functional neuroimaging, together with recommendations for successful implementation.</description><subject>Neuroimaging</subject><subject>Silent MRI</subject><subject>Zero Echo Time (ZTE)</subject><issn>0079-6565</issn><issn>1873-3301</issn><issn>1873-3301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vEzEQxS0EoqHwCZDQHrns4j9rT4wEEopaQCqtBOVsOd5x6mhjB9tbCT59N6RUcOE0h_nNm6f3CHnJaMcoU2-23T7ucuk45ayjoqOUPyILtgTRCkHZY7KgFHSrpJIn5FkpW0qpVByekhPRU1hKsVyQy29hxFibX5hTc33WfPnaRJxyCju7CXHztllNOR-AUm3FNvm23mBrc21sHBo_1SljM4SMroYUy3PyxNux4Iv7eUq-n59drz61F1cfP68-XLSul7q2mjMvtQB0DCwwjQDWg_ISNGjROyuxB2RDb6XWa-X4vAW5doPvpaPOi1Py_qi7n9Y7HNzsMNvR7PPsO_80yQbz7yaGG7NJtwYUU5zDLPD6XiCnHxOWanahOBxHGzFNxXApFOilZgdUHFGXUykZ_cMbRs2hCbM1v5swhyYMFWZuYr569bfDh5s_0c_AuyOAc063AbMpLmB0eEzTDCn898EdwOOcow</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ljungberg, Emil</creator><creator>Damestani, Nikou L.</creator><creator>Wood, Tobias C.</creator><creator>Lythgoe, David J.</creator><creator>Zelaya, Fernando</creator><creator>Williams, Steven C.R.</creator><creator>Solana, Ana Beatriz</creator><creator>Barker, Gareth J.</creator><creator>Wiesinger, Florian</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210401</creationdate><title>Silent zero TE MR neuroimaging: Current state-of-the-art and future directions</title><author>Ljungberg, Emil ; Damestani, Nikou L. ; Wood, Tobias C. ; Lythgoe, David J. ; Zelaya, Fernando ; Williams, Steven C.R. ; Solana, Ana Beatriz ; Barker, Gareth J. ; Wiesinger, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-921f5937ec17a719e77af76f5797934ca5e47e1d4a599b6c2af775bcdf45c0cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Neuroimaging</topic><topic>Silent MRI</topic><topic>Zero Echo Time (ZTE)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ljungberg, Emil</creatorcontrib><creatorcontrib>Damestani, Nikou L.</creatorcontrib><creatorcontrib>Wood, Tobias C.</creatorcontrib><creatorcontrib>Lythgoe, David J.</creatorcontrib><creatorcontrib>Zelaya, Fernando</creatorcontrib><creatorcontrib>Williams, Steven C.R.</creatorcontrib><creatorcontrib>Solana, Ana Beatriz</creatorcontrib><creatorcontrib>Barker, Gareth J.</creatorcontrib><creatorcontrib>Wiesinger, Florian</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in nuclear magnetic resonance spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ljungberg, Emil</au><au>Damestani, Nikou L.</au><au>Wood, Tobias C.</au><au>Lythgoe, David J.</au><au>Zelaya, Fernando</au><au>Williams, Steven C.R.</au><au>Solana, Ana Beatriz</au><au>Barker, Gareth J.</au><au>Wiesinger, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silent zero TE MR neuroimaging: Current state-of-the-art and future directions</atitle><jtitle>Progress in nuclear magnetic resonance spectroscopy</jtitle><addtitle>Prog Nucl Magn Reson Spectrosc</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>123</volume><spage>73</spage><epage>93</epage><pages>73-93</pages><issn>0079-6565</issn><issn>1873-3301</issn><eissn>1873-3301</eissn><abstract>[Display omitted]
•Describes why ZTE pulse sequences are silent.•How to generate strong contrast with ZTE via magnetisation preparation.•Examples of PD, T1, T2, T2*, MT, MRA and DWI contrast.•Reviews the benefits of silent ZTE acquisitions in clinical applications.
Magnetic Resonance Imaging (MRI) scanners produce loud acoustic noise originating from vibrational Lorentz forces induced by rapidly changing currents in the magnetic field gradient coils. Using zero echo time (ZTE) MRI pulse sequences, gradient switching can be reduced to a minimum, which enables near silent operation.Besides silent MRI, ZTE offers further interesting characteristics, including a nominal echo time of TE = 0 (thus capturing short-lived signals from MR tissues which are otherwise MR-invisible), 3D radial sampling (providing motion robustness), and ultra-short repetition times (providing fast and efficient scanning).In this work we describe the main concepts behind ZTE imaging with a focus on conceptual understanding of the imaging sequences, relevant acquisition parameters, commonly observed image artefacts, and image contrasts. We will further describe a range of methods for anatomical and functional neuroimaging, together with recommendations for successful implementation.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>34078538</pmid><doi>10.1016/j.pnmrs.2021.03.002</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6565 |
ispartof | Progress in nuclear magnetic resonance spectroscopy, 2021-04, Vol.123, p.73-93 |
issn | 0079-6565 1873-3301 1873-3301 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7616227 |
source | Access via ScienceDirect (Elsevier) |
subjects | Neuroimaging Silent MRI Zero Echo Time (ZTE) |
title | Silent zero TE MR neuroimaging: Current state-of-the-art and future directions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silent%20zero%20TE%20MR%20neuroimaging:%20Current%20state-of-the-art%20and%20future%20directions&rft.jtitle=Progress%20in%20nuclear%20magnetic%20resonance%20spectroscopy&rft.au=Ljungberg,%20Emil&rft.date=2021-04-01&rft.volume=123&rft.spage=73&rft.epage=93&rft.pages=73-93&rft.issn=0079-6565&rft.eissn=1873-3301&rft_id=info:doi/10.1016/j.pnmrs.2021.03.002&rft_dat=%3Cproquest_pubme%3E2536798917%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536798917&rft_id=info:pmid/34078538&rft_els_id=S007965652100011X&rfr_iscdi=true |