Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation

Background The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing‐based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Movement disorders 2023-05, Vol.38 (5), p.818-830
Hauptverfasser: Averna, Alberto, Debove, Ines, Nowacki, Andreas, Peterman, Katrin, Duchet, Benoit, Sousa, Mário, Bernasconi, Elena, Alva, Laura, Lachenmayer, Martin L., Schuepbach, Michael, Pollo, Claudio, Krack, Paul, Nguyen, Thuy‐Anh K., Tinkhauser, Gerd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 830
container_issue 5
container_start_page 818
container_title Movement disorders
container_volume 38
creator Averna, Alberto
Debove, Ines
Nowacki, Andreas
Peterman, Katrin
Duchet, Benoit
Sousa, Mário
Bernasconi, Elena
Alva, Laura
Lachenmayer, Martin L.
Schuepbach, Michael
Pollo, Claudio
Krack, Paul
Nguyen, Thuy‐Anh K.
Tinkhauser, Gerd
description Background The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing‐based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). Objectives The aims were to systematically investigate the spectral topography, including a wide range of sub‐bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. Methods STN‐LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub‐bands (delta, theta, alpha, low‐beta, high‐beta, low‐gamma, high‐gamma, and fast‐gamma (FG) as well as low‐ and fast high‐frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. Results The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior‐superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub‐bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher‐frequency hot spots were predictive for the best rigidity response to DBS. Conclusions The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next‐generation sensing‐based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Our work illustrates the spectral topography of the subthalamic nucleus in patients with Parkinson's disease. Spectral features ranging from 1 to 390 Hz are spatially segregated, mainly in the inferior‐superior axis, with varying relationships to the clinical hot spot. The spectral–clinical topography may help inform next‐generation sensing‐based deep brain stimulation.
doi_str_mv 10.1002/mds.29381
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824577365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-8362de4108d89746dbc731bc940b959f042353f791c9420735ca779378dd6e453</originalsourceid><addsrcrecordid>eNp1kc9OFTEUhxuCkQu64AVMEzayuNC_03ZjoqBIgri4uG46nTPckpnp2M4od8cj-Iw-iXO5SMDE1UnO-fLld_JDaJ-SI0oIO26rfMQM13QLzajkdK6ZVNtoRrSWc0613EG7Od8QQqmkxUu0wwujFddyhtyiBz8k1-Cr2Mfr5PrlCscaD0vAi7Eclq5xbfD4cvQNjBkPEZ93dUwtvoTb4ffdrzPoILkhxA6fAvT4Q3Khw4shtGNzv36FXtSuyfD6Ye6hb58-Xp18nl98PTs_eX8x90KsI_OCVSAo0ZU2ShRV6RWnpTeClEaamgjGJa-VodOKEcWld0oZrnRVFSAk30PvNt5-LFuoPHTrt2yfQuvSykYX7PNLF5b2Ov6wqqBSSzYJ3j4IUvw-Qh5sG7KHpnEdxDFbpgwTRhVMTejBP-hNHFM3vWeZZkIqxYt1osMN5VPMOUH9GIYSuy7OTsXZ--Im9s3T9I_k36Ym4HgD_AwNrP5vsl9OFxvlH8lFozY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824577365</pqid></control><display><type>article</type><title>Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Averna, Alberto ; Debove, Ines ; Nowacki, Andreas ; Peterman, Katrin ; Duchet, Benoit ; Sousa, Mário ; Bernasconi, Elena ; Alva, Laura ; Lachenmayer, Martin L. ; Schuepbach, Michael ; Pollo, Claudio ; Krack, Paul ; Nguyen, Thuy‐Anh K. ; Tinkhauser, Gerd</creator><creatorcontrib>Averna, Alberto ; Debove, Ines ; Nowacki, Andreas ; Peterman, Katrin ; Duchet, Benoit ; Sousa, Mário ; Bernasconi, Elena ; Alva, Laura ; Lachenmayer, Martin L. ; Schuepbach, Michael ; Pollo, Claudio ; Krack, Paul ; Nguyen, Thuy‐Anh K. ; Tinkhauser, Gerd</creatorcontrib><description>Background The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing‐based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). Objectives The aims were to systematically investigate the spectral topography, including a wide range of sub‐bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. Methods STN‐LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub‐bands (delta, theta, alpha, low‐beta, high‐beta, low‐gamma, high‐gamma, and fast‐gamma (FG) as well as low‐ and fast high‐frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. Results The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior‐superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub‐bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher‐frequency hot spots were predictive for the best rigidity response to DBS. Conclusions The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next‐generation sensing‐based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Our work illustrates the spectral topography of the subthalamic nucleus in patients with Parkinson's disease. Spectral features ranging from 1 to 390 Hz are spatially segregated, mainly in the inferior‐superior axis, with varying relationships to the clinical hot spot. The spectral–clinical topography may help inform next‐generation sensing‐based deep brain stimulation.</description><identifier>ISSN: 0885-3185</identifier><identifier>EISSN: 1531-8257</identifier><identifier>DOI: 10.1002/mds.29381</identifier><identifier>PMID: 36987385</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>adaptive deep brain stimulation ; Basal Ganglia ; Biomarkers ; closed‐loop deep brain stimulation ; Deep Brain Stimulation ; deep brain stimulation programming ; Electrical stimuli ; Electrodes ; Hot spots ; Humans ; local field potentials ; Localization ; Movement disorders ; Neurodegenerative diseases ; Oscillations ; Parkinson Disease - therapy ; Parkinson's disease ; Solitary tract nucleus ; Subthalamic Nucleus ; Topography</subject><ispartof>Movement disorders, 2023-05, Vol.38 (5), p.818-830</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</rights><rights>2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4431-8362de4108d89746dbc731bc940b959f042353f791c9420735ca779378dd6e453</citedby><cites>FETCH-LOGICAL-c4431-8362de4108d89746dbc731bc940b959f042353f791c9420735ca779378dd6e453</cites><orcidid>0000-0003-0577-5035 ; 0000-0001-9738-1281 ; 0000-0002-1709-2963 ; 0000-0003-2952-6383 ; 0000-0002-1954-1873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmds.29381$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmds.29381$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36987385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Averna, Alberto</creatorcontrib><creatorcontrib>Debove, Ines</creatorcontrib><creatorcontrib>Nowacki, Andreas</creatorcontrib><creatorcontrib>Peterman, Katrin</creatorcontrib><creatorcontrib>Duchet, Benoit</creatorcontrib><creatorcontrib>Sousa, Mário</creatorcontrib><creatorcontrib>Bernasconi, Elena</creatorcontrib><creatorcontrib>Alva, Laura</creatorcontrib><creatorcontrib>Lachenmayer, Martin L.</creatorcontrib><creatorcontrib>Schuepbach, Michael</creatorcontrib><creatorcontrib>Pollo, Claudio</creatorcontrib><creatorcontrib>Krack, Paul</creatorcontrib><creatorcontrib>Nguyen, Thuy‐Anh K.</creatorcontrib><creatorcontrib>Tinkhauser, Gerd</creatorcontrib><title>Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation</title><title>Movement disorders</title><addtitle>Mov Disord</addtitle><description>Background The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing‐based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). Objectives The aims were to systematically investigate the spectral topography, including a wide range of sub‐bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. Methods STN‐LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub‐bands (delta, theta, alpha, low‐beta, high‐beta, low‐gamma, high‐gamma, and fast‐gamma (FG) as well as low‐ and fast high‐frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. Results The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior‐superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub‐bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher‐frequency hot spots were predictive for the best rigidity response to DBS. Conclusions The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next‐generation sensing‐based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Our work illustrates the spectral topography of the subthalamic nucleus in patients with Parkinson's disease. Spectral features ranging from 1 to 390 Hz are spatially segregated, mainly in the inferior‐superior axis, with varying relationships to the clinical hot spot. The spectral–clinical topography may help inform next‐generation sensing‐based deep brain stimulation.</description><subject>adaptive deep brain stimulation</subject><subject>Basal Ganglia</subject><subject>Biomarkers</subject><subject>closed‐loop deep brain stimulation</subject><subject>Deep Brain Stimulation</subject><subject>deep brain stimulation programming</subject><subject>Electrical stimuli</subject><subject>Electrodes</subject><subject>Hot spots</subject><subject>Humans</subject><subject>local field potentials</subject><subject>Localization</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>Oscillations</subject><subject>Parkinson Disease - therapy</subject><subject>Parkinson's disease</subject><subject>Solitary tract nucleus</subject><subject>Subthalamic Nucleus</subject><subject>Topography</subject><issn>0885-3185</issn><issn>1531-8257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9OFTEUhxuCkQu64AVMEzayuNC_03ZjoqBIgri4uG46nTPckpnp2M4od8cj-Iw-iXO5SMDE1UnO-fLld_JDaJ-SI0oIO26rfMQM13QLzajkdK6ZVNtoRrSWc0613EG7Od8QQqmkxUu0wwujFddyhtyiBz8k1-Cr2Mfr5PrlCscaD0vAi7Eclq5xbfD4cvQNjBkPEZ93dUwtvoTb4ffdrzPoILkhxA6fAvT4Q3Khw4shtGNzv36FXtSuyfD6Ye6hb58-Xp18nl98PTs_eX8x90KsI_OCVSAo0ZU2ShRV6RWnpTeClEaamgjGJa-VodOKEcWld0oZrnRVFSAk30PvNt5-LFuoPHTrt2yfQuvSykYX7PNLF5b2Ov6wqqBSSzYJ3j4IUvw-Qh5sG7KHpnEdxDFbpgwTRhVMTejBP-hNHFM3vWeZZkIqxYt1osMN5VPMOUH9GIYSuy7OTsXZ--Im9s3T9I_k36Ym4HgD_AwNrP5vsl9OFxvlH8lFozY</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Averna, Alberto</creator><creator>Debove, Ines</creator><creator>Nowacki, Andreas</creator><creator>Peterman, Katrin</creator><creator>Duchet, Benoit</creator><creator>Sousa, Mário</creator><creator>Bernasconi, Elena</creator><creator>Alva, Laura</creator><creator>Lachenmayer, Martin L.</creator><creator>Schuepbach, Michael</creator><creator>Pollo, Claudio</creator><creator>Krack, Paul</creator><creator>Nguyen, Thuy‐Anh K.</creator><creator>Tinkhauser, Gerd</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0577-5035</orcidid><orcidid>https://orcid.org/0000-0001-9738-1281</orcidid><orcidid>https://orcid.org/0000-0002-1709-2963</orcidid><orcidid>https://orcid.org/0000-0003-2952-6383</orcidid><orcidid>https://orcid.org/0000-0002-1954-1873</orcidid></search><sort><creationdate>202305</creationdate><title>Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation</title><author>Averna, Alberto ; Debove, Ines ; Nowacki, Andreas ; Peterman, Katrin ; Duchet, Benoit ; Sousa, Mário ; Bernasconi, Elena ; Alva, Laura ; Lachenmayer, Martin L. ; Schuepbach, Michael ; Pollo, Claudio ; Krack, Paul ; Nguyen, Thuy‐Anh K. ; Tinkhauser, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-8362de4108d89746dbc731bc940b959f042353f791c9420735ca779378dd6e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptive deep brain stimulation</topic><topic>Basal Ganglia</topic><topic>Biomarkers</topic><topic>closed‐loop deep brain stimulation</topic><topic>Deep Brain Stimulation</topic><topic>deep brain stimulation programming</topic><topic>Electrical stimuli</topic><topic>Electrodes</topic><topic>Hot spots</topic><topic>Humans</topic><topic>local field potentials</topic><topic>Localization</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>Oscillations</topic><topic>Parkinson Disease - therapy</topic><topic>Parkinson's disease</topic><topic>Solitary tract nucleus</topic><topic>Subthalamic Nucleus</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averna, Alberto</creatorcontrib><creatorcontrib>Debove, Ines</creatorcontrib><creatorcontrib>Nowacki, Andreas</creatorcontrib><creatorcontrib>Peterman, Katrin</creatorcontrib><creatorcontrib>Duchet, Benoit</creatorcontrib><creatorcontrib>Sousa, Mário</creatorcontrib><creatorcontrib>Bernasconi, Elena</creatorcontrib><creatorcontrib>Alva, Laura</creatorcontrib><creatorcontrib>Lachenmayer, Martin L.</creatorcontrib><creatorcontrib>Schuepbach, Michael</creatorcontrib><creatorcontrib>Pollo, Claudio</creatorcontrib><creatorcontrib>Krack, Paul</creatorcontrib><creatorcontrib>Nguyen, Thuy‐Anh K.</creatorcontrib><creatorcontrib>Tinkhauser, Gerd</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Movement disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averna, Alberto</au><au>Debove, Ines</au><au>Nowacki, Andreas</au><au>Peterman, Katrin</au><au>Duchet, Benoit</au><au>Sousa, Mário</au><au>Bernasconi, Elena</au><au>Alva, Laura</au><au>Lachenmayer, Martin L.</au><au>Schuepbach, Michael</au><au>Pollo, Claudio</au><au>Krack, Paul</au><au>Nguyen, Thuy‐Anh K.</au><au>Tinkhauser, Gerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation</atitle><jtitle>Movement disorders</jtitle><addtitle>Mov Disord</addtitle><date>2023-05</date><risdate>2023</risdate><volume>38</volume><issue>5</issue><spage>818</spage><epage>830</epage><pages>818-830</pages><issn>0885-3185</issn><eissn>1531-8257</eissn><abstract>Background The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing‐based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). Objectives The aims were to systematically investigate the spectral topography, including a wide range of sub‐bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. Methods STN‐LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub‐bands (delta, theta, alpha, low‐beta, high‐beta, low‐gamma, high‐gamma, and fast‐gamma (FG) as well as low‐ and fast high‐frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. Results The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior‐superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub‐bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher‐frequency hot spots were predictive for the best rigidity response to DBS. Conclusions The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next‐generation sensing‐based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Our work illustrates the spectral topography of the subthalamic nucleus in patients with Parkinson's disease. Spectral features ranging from 1 to 390 Hz are spatially segregated, mainly in the inferior‐superior axis, with varying relationships to the clinical hot spot. The spectral–clinical topography may help inform next‐generation sensing‐based deep brain stimulation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36987385</pmid><doi>10.1002/mds.29381</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0577-5035</orcidid><orcidid>https://orcid.org/0000-0001-9738-1281</orcidid><orcidid>https://orcid.org/0000-0002-1709-2963</orcidid><orcidid>https://orcid.org/0000-0003-2952-6383</orcidid><orcidid>https://orcid.org/0000-0002-1954-1873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-3185
ispartof Movement disorders, 2023-05, Vol.38 (5), p.818-830
issn 0885-3185
1531-8257
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615852
source MEDLINE; Access via Wiley Online Library
subjects adaptive deep brain stimulation
Basal Ganglia
Biomarkers
closed‐loop deep brain stimulation
Deep Brain Stimulation
deep brain stimulation programming
Electrical stimuli
Electrodes
Hot spots
Humans
local field potentials
Localization
Movement disorders
Neurodegenerative diseases
Oscillations
Parkinson Disease - therapy
Parkinson's disease
Solitary tract nucleus
Subthalamic Nucleus
Topography
title Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Topography%20of%20the%20Subthalamic%20Nucleus%20to%20Inform%20Next%E2%80%90Generation%20Deep%20Brain%20Stimulation&rft.jtitle=Movement%20disorders&rft.au=Averna,%20Alberto&rft.date=2023-05&rft.volume=38&rft.issue=5&rft.spage=818&rft.epage=830&rft.pages=818-830&rft.issn=0885-3185&rft.eissn=1531-8257&rft_id=info:doi/10.1002/mds.29381&rft_dat=%3Cproquest_pubme%3E2824577365%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824577365&rft_id=info:pmid/36987385&rfr_iscdi=true