Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation
Background The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing‐based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral bio...
Gespeichert in:
Veröffentlicht in: | Movement disorders 2023-05, Vol.38 (5), p.818-830 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 830 |
---|---|
container_issue | 5 |
container_start_page | 818 |
container_title | Movement disorders |
container_volume | 38 |
creator | Averna, Alberto Debove, Ines Nowacki, Andreas Peterman, Katrin Duchet, Benoit Sousa, Mário Bernasconi, Elena Alva, Laura Lachenmayer, Martin L. Schuepbach, Michael Pollo, Claudio Krack, Paul Nguyen, Thuy‐Anh K. Tinkhauser, Gerd |
description | Background
The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing‐based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN).
Objectives
The aims were to systematically investigate the spectral topography, including a wide range of sub‐bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS.
Methods
STN‐LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub‐bands (delta, theta, alpha, low‐beta, high‐beta, low‐gamma, high‐gamma, and fast‐gamma (FG) as well as low‐ and fast high‐frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS.
Results
The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior‐superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub‐bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher‐frequency hot spots were predictive for the best rigidity response to DBS.
Conclusions
The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next‐generation sensing‐based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Our work illustrates the spectral topography of the subthalamic nucleus in patients with Parkinson's disease. Spectral features ranging from 1 to 390 Hz are spatially segregated, mainly in the inferior‐superior axis, with varying relationships to the clinical hot spot. The spectral–clinical topography may help inform next‐generation sensing‐based deep brain stimulation. |
doi_str_mv | 10.1002/mds.29381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824577365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4431-8362de4108d89746dbc731bc940b959f042353f791c9420735ca779378dd6e453</originalsourceid><addsrcrecordid>eNp1kc9OFTEUhxuCkQu64AVMEzayuNC_03ZjoqBIgri4uG46nTPckpnp2M4od8cj-Iw-iXO5SMDE1UnO-fLld_JDaJ-SI0oIO26rfMQM13QLzajkdK6ZVNtoRrSWc0613EG7Od8QQqmkxUu0wwujFddyhtyiBz8k1-Cr2Mfr5PrlCscaD0vAi7Eclq5xbfD4cvQNjBkPEZ93dUwtvoTb4ffdrzPoILkhxA6fAvT4Q3Khw4shtGNzv36FXtSuyfD6Ye6hb58-Xp18nl98PTs_eX8x90KsI_OCVSAo0ZU2ShRV6RWnpTeClEaamgjGJa-VodOKEcWld0oZrnRVFSAk30PvNt5-LFuoPHTrt2yfQuvSykYX7PNLF5b2Ov6wqqBSSzYJ3j4IUvw-Qh5sG7KHpnEdxDFbpgwTRhVMTejBP-hNHFM3vWeZZkIqxYt1osMN5VPMOUH9GIYSuy7OTsXZ--Im9s3T9I_k36Ym4HgD_AwNrP5vsl9OFxvlH8lFozY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824577365</pqid></control><display><type>article</type><title>Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Averna, Alberto ; Debove, Ines ; Nowacki, Andreas ; Peterman, Katrin ; Duchet, Benoit ; Sousa, Mário ; Bernasconi, Elena ; Alva, Laura ; Lachenmayer, Martin L. ; Schuepbach, Michael ; Pollo, Claudio ; Krack, Paul ; Nguyen, Thuy‐Anh K. ; Tinkhauser, Gerd</creator><creatorcontrib>Averna, Alberto ; Debove, Ines ; Nowacki, Andreas ; Peterman, Katrin ; Duchet, Benoit ; Sousa, Mário ; Bernasconi, Elena ; Alva, Laura ; Lachenmayer, Martin L. ; Schuepbach, Michael ; Pollo, Claudio ; Krack, Paul ; Nguyen, Thuy‐Anh K. ; Tinkhauser, Gerd</creatorcontrib><description>Background
The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing‐based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN).
Objectives
The aims were to systematically investigate the spectral topography, including a wide range of sub‐bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS.
Methods
STN‐LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub‐bands (delta, theta, alpha, low‐beta, high‐beta, low‐gamma, high‐gamma, and fast‐gamma (FG) as well as low‐ and fast high‐frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS.
Results
The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior‐superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub‐bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher‐frequency hot spots were predictive for the best rigidity response to DBS.
Conclusions
The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next‐generation sensing‐based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Our work illustrates the spectral topography of the subthalamic nucleus in patients with Parkinson's disease. Spectral features ranging from 1 to 390 Hz are spatially segregated, mainly in the inferior‐superior axis, with varying relationships to the clinical hot spot. The spectral–clinical topography may help inform next‐generation sensing‐based deep brain stimulation.</description><identifier>ISSN: 0885-3185</identifier><identifier>EISSN: 1531-8257</identifier><identifier>DOI: 10.1002/mds.29381</identifier><identifier>PMID: 36987385</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>adaptive deep brain stimulation ; Basal Ganglia ; Biomarkers ; closed‐loop deep brain stimulation ; Deep Brain Stimulation ; deep brain stimulation programming ; Electrical stimuli ; Electrodes ; Hot spots ; Humans ; local field potentials ; Localization ; Movement disorders ; Neurodegenerative diseases ; Oscillations ; Parkinson Disease - therapy ; Parkinson's disease ; Solitary tract nucleus ; Subthalamic Nucleus ; Topography</subject><ispartof>Movement disorders, 2023-05, Vol.38 (5), p.818-830</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</rights><rights>2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4431-8362de4108d89746dbc731bc940b959f042353f791c9420735ca779378dd6e453</citedby><cites>FETCH-LOGICAL-c4431-8362de4108d89746dbc731bc940b959f042353f791c9420735ca779378dd6e453</cites><orcidid>0000-0003-0577-5035 ; 0000-0001-9738-1281 ; 0000-0002-1709-2963 ; 0000-0003-2952-6383 ; 0000-0002-1954-1873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmds.29381$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmds.29381$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36987385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Averna, Alberto</creatorcontrib><creatorcontrib>Debove, Ines</creatorcontrib><creatorcontrib>Nowacki, Andreas</creatorcontrib><creatorcontrib>Peterman, Katrin</creatorcontrib><creatorcontrib>Duchet, Benoit</creatorcontrib><creatorcontrib>Sousa, Mário</creatorcontrib><creatorcontrib>Bernasconi, Elena</creatorcontrib><creatorcontrib>Alva, Laura</creatorcontrib><creatorcontrib>Lachenmayer, Martin L.</creatorcontrib><creatorcontrib>Schuepbach, Michael</creatorcontrib><creatorcontrib>Pollo, Claudio</creatorcontrib><creatorcontrib>Krack, Paul</creatorcontrib><creatorcontrib>Nguyen, Thuy‐Anh K.</creatorcontrib><creatorcontrib>Tinkhauser, Gerd</creatorcontrib><title>Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation</title><title>Movement disorders</title><addtitle>Mov Disord</addtitle><description>Background
The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing‐based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN).
Objectives
The aims were to systematically investigate the spectral topography, including a wide range of sub‐bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS.
Methods
STN‐LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub‐bands (delta, theta, alpha, low‐beta, high‐beta, low‐gamma, high‐gamma, and fast‐gamma (FG) as well as low‐ and fast high‐frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS.
Results
The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior‐superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub‐bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher‐frequency hot spots were predictive for the best rigidity response to DBS.
Conclusions
The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next‐generation sensing‐based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Our work illustrates the spectral topography of the subthalamic nucleus in patients with Parkinson's disease. Spectral features ranging from 1 to 390 Hz are spatially segregated, mainly in the inferior‐superior axis, with varying relationships to the clinical hot spot. The spectral–clinical topography may help inform next‐generation sensing‐based deep brain stimulation.</description><subject>adaptive deep brain stimulation</subject><subject>Basal Ganglia</subject><subject>Biomarkers</subject><subject>closed‐loop deep brain stimulation</subject><subject>Deep Brain Stimulation</subject><subject>deep brain stimulation programming</subject><subject>Electrical stimuli</subject><subject>Electrodes</subject><subject>Hot spots</subject><subject>Humans</subject><subject>local field potentials</subject><subject>Localization</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>Oscillations</subject><subject>Parkinson Disease - therapy</subject><subject>Parkinson's disease</subject><subject>Solitary tract nucleus</subject><subject>Subthalamic Nucleus</subject><subject>Topography</subject><issn>0885-3185</issn><issn>1531-8257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9OFTEUhxuCkQu64AVMEzayuNC_03ZjoqBIgri4uG46nTPckpnp2M4od8cj-Iw-iXO5SMDE1UnO-fLld_JDaJ-SI0oIO26rfMQM13QLzajkdK6ZVNtoRrSWc0613EG7Od8QQqmkxUu0wwujFddyhtyiBz8k1-Cr2Mfr5PrlCscaD0vAi7Eclq5xbfD4cvQNjBkPEZ93dUwtvoTb4ffdrzPoILkhxA6fAvT4Q3Khw4shtGNzv36FXtSuyfD6Ye6hb58-Xp18nl98PTs_eX8x90KsI_OCVSAo0ZU2ShRV6RWnpTeClEaamgjGJa-VodOKEcWld0oZrnRVFSAk30PvNt5-LFuoPHTrt2yfQuvSykYX7PNLF5b2Ov6wqqBSSzYJ3j4IUvw-Qh5sG7KHpnEdxDFbpgwTRhVMTejBP-hNHFM3vWeZZkIqxYt1osMN5VPMOUH9GIYSuy7OTsXZ--Im9s3T9I_k36Ym4HgD_AwNrP5vsl9OFxvlH8lFozY</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Averna, Alberto</creator><creator>Debove, Ines</creator><creator>Nowacki, Andreas</creator><creator>Peterman, Katrin</creator><creator>Duchet, Benoit</creator><creator>Sousa, Mário</creator><creator>Bernasconi, Elena</creator><creator>Alva, Laura</creator><creator>Lachenmayer, Martin L.</creator><creator>Schuepbach, Michael</creator><creator>Pollo, Claudio</creator><creator>Krack, Paul</creator><creator>Nguyen, Thuy‐Anh K.</creator><creator>Tinkhauser, Gerd</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0577-5035</orcidid><orcidid>https://orcid.org/0000-0001-9738-1281</orcidid><orcidid>https://orcid.org/0000-0002-1709-2963</orcidid><orcidid>https://orcid.org/0000-0003-2952-6383</orcidid><orcidid>https://orcid.org/0000-0002-1954-1873</orcidid></search><sort><creationdate>202305</creationdate><title>Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation</title><author>Averna, Alberto ; Debove, Ines ; Nowacki, Andreas ; Peterman, Katrin ; Duchet, Benoit ; Sousa, Mário ; Bernasconi, Elena ; Alva, Laura ; Lachenmayer, Martin L. ; Schuepbach, Michael ; Pollo, Claudio ; Krack, Paul ; Nguyen, Thuy‐Anh K. ; Tinkhauser, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4431-8362de4108d89746dbc731bc940b959f042353f791c9420735ca779378dd6e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adaptive deep brain stimulation</topic><topic>Basal Ganglia</topic><topic>Biomarkers</topic><topic>closed‐loop deep brain stimulation</topic><topic>Deep Brain Stimulation</topic><topic>deep brain stimulation programming</topic><topic>Electrical stimuli</topic><topic>Electrodes</topic><topic>Hot spots</topic><topic>Humans</topic><topic>local field potentials</topic><topic>Localization</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>Oscillations</topic><topic>Parkinson Disease - therapy</topic><topic>Parkinson's disease</topic><topic>Solitary tract nucleus</topic><topic>Subthalamic Nucleus</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averna, Alberto</creatorcontrib><creatorcontrib>Debove, Ines</creatorcontrib><creatorcontrib>Nowacki, Andreas</creatorcontrib><creatorcontrib>Peterman, Katrin</creatorcontrib><creatorcontrib>Duchet, Benoit</creatorcontrib><creatorcontrib>Sousa, Mário</creatorcontrib><creatorcontrib>Bernasconi, Elena</creatorcontrib><creatorcontrib>Alva, Laura</creatorcontrib><creatorcontrib>Lachenmayer, Martin L.</creatorcontrib><creatorcontrib>Schuepbach, Michael</creatorcontrib><creatorcontrib>Pollo, Claudio</creatorcontrib><creatorcontrib>Krack, Paul</creatorcontrib><creatorcontrib>Nguyen, Thuy‐Anh K.</creatorcontrib><creatorcontrib>Tinkhauser, Gerd</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Movement disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averna, Alberto</au><au>Debove, Ines</au><au>Nowacki, Andreas</au><au>Peterman, Katrin</au><au>Duchet, Benoit</au><au>Sousa, Mário</au><au>Bernasconi, Elena</au><au>Alva, Laura</au><au>Lachenmayer, Martin L.</au><au>Schuepbach, Michael</au><au>Pollo, Claudio</au><au>Krack, Paul</au><au>Nguyen, Thuy‐Anh K.</au><au>Tinkhauser, Gerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation</atitle><jtitle>Movement disorders</jtitle><addtitle>Mov Disord</addtitle><date>2023-05</date><risdate>2023</risdate><volume>38</volume><issue>5</issue><spage>818</spage><epage>830</epage><pages>818-830</pages><issn>0885-3185</issn><eissn>1531-8257</eissn><abstract>Background
The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing‐based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN).
Objectives
The aims were to systematically investigate the spectral topography, including a wide range of sub‐bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS.
Methods
STN‐LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub‐bands (delta, theta, alpha, low‐beta, high‐beta, low‐gamma, high‐gamma, and fast‐gamma (FG) as well as low‐ and fast high‐frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS.
Results
The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior‐superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub‐bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher‐frequency hot spots were predictive for the best rigidity response to DBS.
Conclusions
The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next‐generation sensing‐based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Our work illustrates the spectral topography of the subthalamic nucleus in patients with Parkinson's disease. Spectral features ranging from 1 to 390 Hz are spatially segregated, mainly in the inferior‐superior axis, with varying relationships to the clinical hot spot. The spectral–clinical topography may help inform next‐generation sensing‐based deep brain stimulation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36987385</pmid><doi>10.1002/mds.29381</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0577-5035</orcidid><orcidid>https://orcid.org/0000-0001-9738-1281</orcidid><orcidid>https://orcid.org/0000-0002-1709-2963</orcidid><orcidid>https://orcid.org/0000-0003-2952-6383</orcidid><orcidid>https://orcid.org/0000-0002-1954-1873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3185 |
ispartof | Movement disorders, 2023-05, Vol.38 (5), p.818-830 |
issn | 0885-3185 1531-8257 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615852 |
source | MEDLINE; Access via Wiley Online Library |
subjects | adaptive deep brain stimulation Basal Ganglia Biomarkers closed‐loop deep brain stimulation Deep Brain Stimulation deep brain stimulation programming Electrical stimuli Electrodes Hot spots Humans local field potentials Localization Movement disorders Neurodegenerative diseases Oscillations Parkinson Disease - therapy Parkinson's disease Solitary tract nucleus Subthalamic Nucleus Topography |
title | Spectral Topography of the Subthalamic Nucleus to Inform Next‐Generation Deep Brain Stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Topography%20of%20the%20Subthalamic%20Nucleus%20to%20Inform%20Next%E2%80%90Generation%20Deep%20Brain%20Stimulation&rft.jtitle=Movement%20disorders&rft.au=Averna,%20Alberto&rft.date=2023-05&rft.volume=38&rft.issue=5&rft.spage=818&rft.epage=830&rft.pages=818-830&rft.issn=0885-3185&rft.eissn=1531-8257&rft_id=info:doi/10.1002/mds.29381&rft_dat=%3Cproquest_pubme%3E2824577365%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824577365&rft_id=info:pmid/36987385&rfr_iscdi=true |