Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer modeling in engineering & sciences 2023-08, Vol.137 (3), p.2129-2147
Hauptverfasser: Zuo, Qiankun, Hu, Junhua, Zhang, Yudong, Pan, Junren, Jing, Changhong, Chen, Xuhang, Meng, Xiaobo, Hong, Jin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2147
container_issue 3
container_start_page 2129
container_title Computer modeling in engineering & sciences
container_volume 137
creator Zuo, Qiankun
Hu, Junhua
Zhang, Yudong
Pan, Junren
Jing, Changhong
Chen, Xuhang
Meng, Xiaobo
Hong, Jin
description The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven models. Specifically, the label distribution is estimated to regularize the latent space learned by the graph encoder, which can make the learning process stable and the learned representation robust. Also, the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions. The typical topological properties and discriminative features can be preserved entirely. Furthermore, the generated brain functional networks improve the prediction performance using different classifiers, which can be applied to analyze other cognitive diseases. Attempts on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that the proposed model can generate good brain functional networks. The classification results show adding generated data can achieve the best accuracy value of 85.33%, sensitivity value of 84.00%, specificity value of 86.67%. The proposed model also achieves superior performance compared with other related augmented models. Overall, the proposed model effectively improves cognitive disease diagnosis by generating diverse brain functional networks.
doi_str_mv 10.32604/cmes.2023.028732
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031659496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-79632e5e45555366dc93cf1aa624d872282353359842b3d6f1032beaf2fbb0a13</originalsourceid><addsrcrecordid>eNpVkcFu1DAURS0EomXgA9ggL9lksP1iJ9kgDS0dkCqQULu2HOdlxpDYg520Kl_AZ-MwbQXePPva9_pKh5DXnK1BKFa-syOmtWAC1kzUFYgn5JRLoQoumXr6sC8bcUJepPSdMVBQN8_JCdRSqRqaU_L7QzTO04vZ28kFbwb6BafbEH_QLXqMZhHpdXJ-R89dmqJr50UqvuFuHkx0v7Cjm-4GY8qH7N5Gc9jTzTwF9DZ0GOmtm_b0Khqf-hDHLORBz3FEPzmTQ83Oh-TSS_KsN0PCV_dzRa4vPl6dfSouv24_n20uCwuST0XVKBAosZR5gVKdbcD23Bglyq6uhKgFSADZ1KVooVM9ZyBaNL3o25YZDivy_ph7mNsRO5trRDPoQ3SjiXc6GKf_v_Fur3fhRleKy6pZAt7eB8Twc8Y06dEli8NgPIY5aWDAlWzKXHRF-PGpjSGliP3jN5zpvwT1QlAvBPWRYPa8-bffo-MBGfwB_kibqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031659496</pqid></control><display><type>article</type><title>Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis</title><source>Tech Science Press</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zuo, Qiankun ; Hu, Junhua ; Zhang, Yudong ; Pan, Junren ; Jing, Changhong ; Chen, Xuhang ; Meng, Xiaobo ; Hong, Jin</creator><creatorcontrib>Zuo, Qiankun ; Hu, Junhua ; Zhang, Yudong ; Pan, Junren ; Jing, Changhong ; Chen, Xuhang ; Meng, Xiaobo ; Hong, Jin</creatorcontrib><description>The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven models. Specifically, the label distribution is estimated to regularize the latent space learned by the graph encoder, which can make the learning process stable and the learned representation robust. Also, the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions. The typical topological properties and discriminative features can be preserved entirely. Furthermore, the generated brain functional networks improve the prediction performance using different classifiers, which can be applied to analyze other cognitive diseases. Attempts on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that the proposed model can generate good brain functional networks. The classification results show adding generated data can achieve the best accuracy value of 85.33%, sensitivity value of 84.00%, specificity value of 86.67%. The proposed model also achieves superior performance compared with other related augmented models. Overall, the proposed model effectively improves cognitive disease diagnosis by generating diverse brain functional networks.</description><identifier>ISSN: 1526-1492</identifier><identifier>ISSN: 1526-1506</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.32604/cmes.2023.028732</identifier><identifier>PMID: 38566839</identifier><language>eng</language><publisher>United States</publisher><ispartof>Computer modeling in engineering &amp; sciences, 2023-08, Vol.137 (3), p.2129-2147</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38566839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuo, Qiankun</creatorcontrib><creatorcontrib>Hu, Junhua</creatorcontrib><creatorcontrib>Zhang, Yudong</creatorcontrib><creatorcontrib>Pan, Junren</creatorcontrib><creatorcontrib>Jing, Changhong</creatorcontrib><creatorcontrib>Chen, Xuhang</creatorcontrib><creatorcontrib>Meng, Xiaobo</creatorcontrib><creatorcontrib>Hong, Jin</creatorcontrib><title>Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis</title><title>Computer modeling in engineering &amp; sciences</title><addtitle>Comput Model Eng Sci</addtitle><description>The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven models. Specifically, the label distribution is estimated to regularize the latent space learned by the graph encoder, which can make the learning process stable and the learned representation robust. Also, the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions. The typical topological properties and discriminative features can be preserved entirely. Furthermore, the generated brain functional networks improve the prediction performance using different classifiers, which can be applied to analyze other cognitive diseases. Attempts on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that the proposed model can generate good brain functional networks. The classification results show adding generated data can achieve the best accuracy value of 85.33%, sensitivity value of 84.00%, specificity value of 86.67%. The proposed model also achieves superior performance compared with other related augmented models. Overall, the proposed model effectively improves cognitive disease diagnosis by generating diverse brain functional networks.</description><issn>1526-1492</issn><issn>1526-1506</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkcFu1DAURS0EomXgA9ggL9lksP1iJ9kgDS0dkCqQULu2HOdlxpDYg520Kl_AZ-MwbQXePPva9_pKh5DXnK1BKFa-syOmtWAC1kzUFYgn5JRLoQoumXr6sC8bcUJepPSdMVBQN8_JCdRSqRqaU_L7QzTO04vZ28kFbwb6BafbEH_QLXqMZhHpdXJ-R89dmqJr50UqvuFuHkx0v7Cjm-4GY8qH7N5Gc9jTzTwF9DZ0GOmtm_b0Khqf-hDHLORBz3FEPzmTQ83Oh-TSS_KsN0PCV_dzRa4vPl6dfSouv24_n20uCwuST0XVKBAosZR5gVKdbcD23Bglyq6uhKgFSADZ1KVooVM9ZyBaNL3o25YZDivy_ph7mNsRO5trRDPoQ3SjiXc6GKf_v_Fur3fhRleKy6pZAt7eB8Twc8Y06dEli8NgPIY5aWDAlWzKXHRF-PGpjSGliP3jN5zpvwT1QlAvBPWRYPa8-bffo-MBGfwB_kibqw</recordid><startdate>20230803</startdate><enddate>20230803</enddate><creator>Zuo, Qiankun</creator><creator>Hu, Junhua</creator><creator>Zhang, Yudong</creator><creator>Pan, Junren</creator><creator>Jing, Changhong</creator><creator>Chen, Xuhang</creator><creator>Meng, Xiaobo</creator><creator>Hong, Jin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230803</creationdate><title>Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis</title><author>Zuo, Qiankun ; Hu, Junhua ; Zhang, Yudong ; Pan, Junren ; Jing, Changhong ; Chen, Xuhang ; Meng, Xiaobo ; Hong, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-79632e5e45555366dc93cf1aa624d872282353359842b3d6f1032beaf2fbb0a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Qiankun</creatorcontrib><creatorcontrib>Hu, Junhua</creatorcontrib><creatorcontrib>Zhang, Yudong</creatorcontrib><creatorcontrib>Pan, Junren</creatorcontrib><creatorcontrib>Jing, Changhong</creatorcontrib><creatorcontrib>Chen, Xuhang</creatorcontrib><creatorcontrib>Meng, Xiaobo</creatorcontrib><creatorcontrib>Hong, Jin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computer modeling in engineering &amp; sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Qiankun</au><au>Hu, Junhua</au><au>Zhang, Yudong</au><au>Pan, Junren</au><au>Jing, Changhong</au><au>Chen, Xuhang</au><au>Meng, Xiaobo</au><au>Hong, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis</atitle><jtitle>Computer modeling in engineering &amp; sciences</jtitle><addtitle>Comput Model Eng Sci</addtitle><date>2023-08-03</date><risdate>2023</risdate><volume>137</volume><issue>3</issue><spage>2129</spage><epage>2147</epage><pages>2129-2147</pages><issn>1526-1492</issn><issn>1526-1506</issn><eissn>1526-1506</eissn><abstract>The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven models. Specifically, the label distribution is estimated to regularize the latent space learned by the graph encoder, which can make the learning process stable and the learned representation robust. Also, the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions. The typical topological properties and discriminative features can be preserved entirely. Furthermore, the generated brain functional networks improve the prediction performance using different classifiers, which can be applied to analyze other cognitive diseases. Attempts on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that the proposed model can generate good brain functional networks. The classification results show adding generated data can achieve the best accuracy value of 85.33%, sensitivity value of 84.00%, specificity value of 86.67%. The proposed model also achieves superior performance compared with other related augmented models. Overall, the proposed model effectively improves cognitive disease diagnosis by generating diverse brain functional networks.</abstract><cop>United States</cop><pmid>38566839</pmid><doi>10.32604/cmes.2023.028732</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-1492
ispartof Computer modeling in engineering & sciences, 2023-08, Vol.137 (3), p.2129-2147
issn 1526-1492
1526-1506
1526-1506
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615791
source Tech Science Press; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Functional%20Network%20Generation%20Using%20Distribution-Regularized%20Adversarial%20Graph%20Autoencoder%20with%20Transformer%20for%20Dementia%20Diagnosis&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Zuo,%20Qiankun&rft.date=2023-08-03&rft.volume=137&rft.issue=3&rft.spage=2129&rft.epage=2147&rft.pages=2129-2147&rft.issn=1526-1492&rft.eissn=1526-1506&rft_id=info:doi/10.32604/cmes.2023.028732&rft_dat=%3Cproquest_pubme%3E3031659496%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031659496&rft_id=info:pmid/38566839&rfr_iscdi=true