ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules

This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately. A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer modeling in engineering & sciences 2023-12, Vol.139 (1), p.361-382
Hauptverfasser: Chen, Lu, Chen, Huaqiang, Pan, Zhikai, Xu, Sheng, Lai, Guangsheng, Chen, Shuwen, Wang, Shuihua, Gu, Xiaodong, Zhang, Yudong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 1
container_start_page 361
container_title Computer modeling in engineering & sciences
container_volume 139
creator Chen, Lu
Chen, Huaqiang
Pan, Zhikai
Xu, Sheng
Lai, Guangsheng
Chen, Shuwen
Wang, Shuihua
Gu, Xiaodong
Zhang, Yudong
description This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately. A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of the localization and classification tasks to help improve the model's generalization ability. Third, we introduce strategies for augmenting the data. Finally, we submit a novel deep learning model, ThyroidNet, to accurately detect thyroid nodules. ThyroidNet was evaluated on private datasets and was comparable to other existing methods, including U-Net and TransUnet. Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules. It achieved improved accuracy of 3.9% and 1.5%, respectively. ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks. Future research directions include optimization of the model structure, expansion of the dataset size, reduction of computational complexity and memory requirements, and exploration of additional applications of ThyroidNet in medical image analysis.
doi_str_mv 10.32604/cmes.2023.031229
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031659625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-146eda8c6df9387af6c21165ccc9017c532731d49f9c48dc386b44efc22d26a33</originalsourceid><addsrcrecordid>eNpVkctOAjEUhhujEUQfwI3p0g3Yy7QzdWFC8JoQ3ODGTVN6geowxXbQ4NM7yCW6Oifn8p8_5wPgHKMeJRxlV3puU48gQnuIYkLEAWhjRngXM8QPd3kmSAucpPSGEOW0EMegRQvGeUFZG7yOZ6sYvBnZ-hr24a21Czi0Kla-msKm-BXiO3QhwmHQqvTfqvahgqoycFCqlLzzelMKDm6l4CiYZWnTKThyqkz2bBs74OX-bjx47A6fH54G_WFXU4brxh-3RhWaGydokSvHNcGYM621QDjXjJKcYpMJJ3RWGE0LPsky6zQhhnBFaQfcbHQXy8ncGm2rOqpSLqKfq7iSQXn5v1P5mZyGT5lzzHKBGoHLrUAMH0ubajn3SduyVJUNyyRp81zOBCesGcWbUR1DStG6_RmM5C8TuWYi10zkhkmzc_HX335jB4H-AIyBidY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031659625</pqid></control><display><type>article</type><title>ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Tech Science Press</source><creator>Chen, Lu ; Chen, Huaqiang ; Pan, Zhikai ; Xu, Sheng ; Lai, Guangsheng ; Chen, Shuwen ; Wang, Shuihua ; Gu, Xiaodong ; Zhang, Yudong</creator><creatorcontrib>Chen, Lu ; Chen, Huaqiang ; Pan, Zhikai ; Xu, Sheng ; Lai, Guangsheng ; Chen, Shuwen ; Wang, Shuihua ; Gu, Xiaodong ; Zhang, Yudong</creatorcontrib><description>This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately. A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of the localization and classification tasks to help improve the model's generalization ability. Third, we introduce strategies for augmenting the data. Finally, we submit a novel deep learning model, ThyroidNet, to accurately detect thyroid nodules. ThyroidNet was evaluated on private datasets and was comparable to other existing methods, including U-Net and TransUnet. Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules. It achieved improved accuracy of 3.9% and 1.5%, respectively. ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks. Future research directions include optimization of the model structure, expansion of the dataset size, reduction of computational complexity and memory requirements, and exploration of additional applications of ThyroidNet in medical image analysis.</description><identifier>ISSN: 1526-1492</identifier><identifier>ISSN: 1526-1506</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.32604/cmes.2023.031229</identifier><identifier>PMID: 38566835</identifier><language>eng</language><publisher>United States</publisher><ispartof>Computer modeling in engineering &amp; sciences, 2023-12, Vol.139 (1), p.361-382</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38566835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Chen, Huaqiang</creatorcontrib><creatorcontrib>Pan, Zhikai</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Lai, Guangsheng</creatorcontrib><creatorcontrib>Chen, Shuwen</creatorcontrib><creatorcontrib>Wang, Shuihua</creatorcontrib><creatorcontrib>Gu, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Yudong</creatorcontrib><title>ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules</title><title>Computer modeling in engineering &amp; sciences</title><addtitle>Comput Model Eng Sci</addtitle><description>This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately. A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of the localization and classification tasks to help improve the model's generalization ability. Third, we introduce strategies for augmenting the data. Finally, we submit a novel deep learning model, ThyroidNet, to accurately detect thyroid nodules. ThyroidNet was evaluated on private datasets and was comparable to other existing methods, including U-Net and TransUnet. Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules. It achieved improved accuracy of 3.9% and 1.5%, respectively. ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks. Future research directions include optimization of the model structure, expansion of the dataset size, reduction of computational complexity and memory requirements, and exploration of additional applications of ThyroidNet in medical image analysis.</description><issn>1526-1492</issn><issn>1526-1506</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkctOAjEUhhujEUQfwI3p0g3Yy7QzdWFC8JoQ3ODGTVN6geowxXbQ4NM7yCW6Oifn8p8_5wPgHKMeJRxlV3puU48gQnuIYkLEAWhjRngXM8QPd3kmSAucpPSGEOW0EMegRQvGeUFZG7yOZ6sYvBnZ-hr24a21Czi0Kla-msKm-BXiO3QhwmHQqvTfqvahgqoycFCqlLzzelMKDm6l4CiYZWnTKThyqkz2bBs74OX-bjx47A6fH54G_WFXU4brxh-3RhWaGydokSvHNcGYM621QDjXjJKcYpMJJ3RWGE0LPsky6zQhhnBFaQfcbHQXy8ncGm2rOqpSLqKfq7iSQXn5v1P5mZyGT5lzzHKBGoHLrUAMH0ubajn3SduyVJUNyyRp81zOBCesGcWbUR1DStG6_RmM5C8TuWYi10zkhkmzc_HX335jB4H-AIyBidY</recordid><startdate>20231230</startdate><enddate>20231230</enddate><creator>Chen, Lu</creator><creator>Chen, Huaqiang</creator><creator>Pan, Zhikai</creator><creator>Xu, Sheng</creator><creator>Lai, Guangsheng</creator><creator>Chen, Shuwen</creator><creator>Wang, Shuihua</creator><creator>Gu, Xiaodong</creator><creator>Zhang, Yudong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231230</creationdate><title>ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules</title><author>Chen, Lu ; Chen, Huaqiang ; Pan, Zhikai ; Xu, Sheng ; Lai, Guangsheng ; Chen, Shuwen ; Wang, Shuihua ; Gu, Xiaodong ; Zhang, Yudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-146eda8c6df9387af6c21165ccc9017c532731d49f9c48dc386b44efc22d26a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Chen, Huaqiang</creatorcontrib><creatorcontrib>Pan, Zhikai</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Lai, Guangsheng</creatorcontrib><creatorcontrib>Chen, Shuwen</creatorcontrib><creatorcontrib>Wang, Shuihua</creatorcontrib><creatorcontrib>Gu, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Yudong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computer modeling in engineering &amp; sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lu</au><au>Chen, Huaqiang</au><au>Pan, Zhikai</au><au>Xu, Sheng</au><au>Lai, Guangsheng</au><au>Chen, Shuwen</au><au>Wang, Shuihua</au><au>Gu, Xiaodong</au><au>Zhang, Yudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules</atitle><jtitle>Computer modeling in engineering &amp; sciences</jtitle><addtitle>Comput Model Eng Sci</addtitle><date>2023-12-30</date><risdate>2023</risdate><volume>139</volume><issue>1</issue><spage>361</spage><epage>382</epage><pages>361-382</pages><issn>1526-1492</issn><issn>1526-1506</issn><eissn>1526-1506</eissn><abstract>This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately. A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of the localization and classification tasks to help improve the model's generalization ability. Third, we introduce strategies for augmenting the data. Finally, we submit a novel deep learning model, ThyroidNet, to accurately detect thyroid nodules. ThyroidNet was evaluated on private datasets and was comparable to other existing methods, including U-Net and TransUnet. Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules. It achieved improved accuracy of 3.9% and 1.5%, respectively. ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks. Future research directions include optimization of the model structure, expansion of the dataset size, reduction of computational complexity and memory requirements, and exploration of additional applications of ThyroidNet in medical image analysis.</abstract><cop>United States</cop><pmid>38566835</pmid><doi>10.32604/cmes.2023.031229</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-1492
ispartof Computer modeling in engineering & sciences, 2023-12, Vol.139 (1), p.361-382
issn 1526-1492
1526-1506
1526-1506
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615790
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Tech Science Press
title ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ThyroidNet:%20A%20Deep%20Learning%20Network%20for%20Localization%20and%20Classification%20of%20Thyroid%20Nodules&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Chen,%20Lu&rft.date=2023-12-30&rft.volume=139&rft.issue=1&rft.spage=361&rft.epage=382&rft.pages=361-382&rft.issn=1526-1492&rft.eissn=1526-1506&rft_id=info:doi/10.32604/cmes.2023.031229&rft_dat=%3Cproquest_pubme%3E3031659625%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031659625&rft_id=info:pmid/38566835&rfr_iscdi=true