Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome

Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human mutation 2018-12, Vol.39 (12), p.1847-1853
Hauptverfasser: Llorens‐Agost, Marta, Luessing, Janna, Beneden, Amandine, Eykelenboom, John, O'Reilly, Dawn, Bicknell, Louise S, Reynolds, John J, Koegelenberg, Marianne, Hurles, Matthew E, Brady, Angela F, Jackson, Andrew P, Stewart, Grant S, Lowndes, Noel F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1853
container_issue 12
container_start_page 1847
container_title Human mutation
container_volume 39
creator Llorens‐Agost, Marta
Luessing, Janna
Beneden, Amandine
Eykelenboom, John
O'Reilly, Dawn
Bicknell, Louise S
Reynolds, John J
Koegelenberg, Marianne
Hurles, Matthew E
Brady, Angela F
Jackson, Andrew P
Stewart, Grant S
Lowndes, Noel F
description Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome. Modelling of novel missense mutations within the ATR cDNA did not result in loss of protein function. Rather, these mutations in their genomic context impacted upon normal splicing, resulting in exon skipping and Seckle Syndrome. For example, ATR (c.4995G>T) results in skipping of exon 28 and subsequent abrogation of ATR function.
doi_str_mv 10.1002/humu.23648
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102323020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5148-1ede45727ae822002ae16afe9d6aa38818719c7ee2b5a179c12d4a20e4e7fe6a3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMo9kM3_QEl4EYKt83nZGYjXIq2hYpQe9cxzZxpUzPJNZm5Zf59M721qAtXCSdPHs45L0IHlBxTQtjJ3diPx4xXon6Fdilp6kUpi9fzXTYLpRqxg_ZyvieE1FLyt2iHE9o0sua76McyGD9ll3HscIgb8Lh3OUPIgJfXV7gfBzO4GDJOsAHjMw7wgPPaO-vCLW6hAztkPIYWkp_m0newP4slT6FNsYd36E1XvsH753Mfrb58vj49X1x-O7s4XV4urKSidAwtCKmYMlAzVqYyQCvTQdNWxvC6prWijVUA7EYaqhpLWSsMIyBAdVAZvo8-bb3r8aaH1kIYkvF6nVxv0qSjcfrvl-Du9G3caFVRqaQqgo_PghR_jZAHXRZhwXsTII5ZM0oYZ5wwUtAP_6D3cUxlkTPFheCyzFCooy1lU8w5QffSDCV6Dk7Pwemn4Ap8-Gf7L-jvpApAt8CD8zD9R6XPV19XW-kjLRGlnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134435822</pqid></control><display><type>article</type><title>Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Llorens‐Agost, Marta ; Luessing, Janna ; Beneden, Amandine ; Eykelenboom, John ; O'Reilly, Dawn ; Bicknell, Louise S ; Reynolds, John J ; Koegelenberg, Marianne ; Hurles, Matthew E ; Brady, Angela F ; Jackson, Andrew P ; Stewart, Grant S ; Lowndes, Noel F</creator><creatorcontrib>Llorens‐Agost, Marta ; Luessing, Janna ; Beneden, Amandine ; Eykelenboom, John ; O'Reilly, Dawn ; Bicknell, Louise S ; Reynolds, John J ; Koegelenberg, Marianne ; Hurles, Matthew E ; Brady, Angela F ; Jackson, Andrew P ; Stewart, Grant S ; Lowndes, Noel F</creatorcontrib><description>Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome. Modelling of novel missense mutations within the ATR cDNA did not result in loss of protein function. Rather, these mutations in their genomic context impacted upon normal splicing, resulting in exon skipping and Seckle Syndrome. For example, ATR (c.4995G&gt;T) results in skipping of exon 28 and subsequent abrogation of ATR function.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.23648</identifier><identifier>PMID: 30199583</identifier><language>eng</language><publisher>United States: Hindawi Limited</publisher><subject>Animals ; Ataxia telangiectasia ; Ataxia Telangiectasia Mutated Proteins - genetics ; Ataxia Telangiectasia Mutated Proteins - metabolism ; ATR ; ATR protein ; Cell activation ; Cell cycle ; Cell Line ; chicken ; Chickens ; DNA damage ; Dwarfism - genetics ; Dwarfism - metabolism ; Exome Sequencing ; Exons ; Genomes ; Growth rate ; Humans ; Introns ; Microcephaly - genetics ; Microcephaly - metabolism ; Microencephaly ; Missense mutation ; Mutation ; Mutation, Missense ; Pathogenicity ; RNA Splicing ; Seckel Syndrome ; Splicing ; splicing regulation</subject><ispartof>Human mutation, 2018-12, Vol.39 (12), p.1847-1853</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5148-1ede45727ae822002ae16afe9d6aa38818719c7ee2b5a179c12d4a20e4e7fe6a3</citedby><cites>FETCH-LOGICAL-c5148-1ede45727ae822002ae16afe9d6aa38818719c7ee2b5a179c12d4a20e4e7fe6a3</cites><orcidid>0000-0002-3216-4427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.23648$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.23648$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30199583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Llorens‐Agost, Marta</creatorcontrib><creatorcontrib>Luessing, Janna</creatorcontrib><creatorcontrib>Beneden, Amandine</creatorcontrib><creatorcontrib>Eykelenboom, John</creatorcontrib><creatorcontrib>O'Reilly, Dawn</creatorcontrib><creatorcontrib>Bicknell, Louise S</creatorcontrib><creatorcontrib>Reynolds, John J</creatorcontrib><creatorcontrib>Koegelenberg, Marianne</creatorcontrib><creatorcontrib>Hurles, Matthew E</creatorcontrib><creatorcontrib>Brady, Angela F</creatorcontrib><creatorcontrib>Jackson, Andrew P</creatorcontrib><creatorcontrib>Stewart, Grant S</creatorcontrib><creatorcontrib>Lowndes, Noel F</creatorcontrib><title>Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome. Modelling of novel missense mutations within the ATR cDNA did not result in loss of protein function. Rather, these mutations in their genomic context impacted upon normal splicing, resulting in exon skipping and Seckle Syndrome. For example, ATR (c.4995G&gt;T) results in skipping of exon 28 and subsequent abrogation of ATR function.</description><subject>Animals</subject><subject>Ataxia telangiectasia</subject><subject>Ataxia Telangiectasia Mutated Proteins - genetics</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>ATR</subject><subject>ATR protein</subject><subject>Cell activation</subject><subject>Cell cycle</subject><subject>Cell Line</subject><subject>chicken</subject><subject>Chickens</subject><subject>DNA damage</subject><subject>Dwarfism - genetics</subject><subject>Dwarfism - metabolism</subject><subject>Exome Sequencing</subject><subject>Exons</subject><subject>Genomes</subject><subject>Growth rate</subject><subject>Humans</subject><subject>Introns</subject><subject>Microcephaly - genetics</subject><subject>Microcephaly - metabolism</subject><subject>Microencephaly</subject><subject>Missense mutation</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Pathogenicity</subject><subject>RNA Splicing</subject><subject>Seckel Syndrome</subject><subject>Splicing</subject><subject>splicing regulation</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rFTEUhoMo9kM3_QEl4EYKt83nZGYjXIq2hYpQe9cxzZxpUzPJNZm5Zf59M721qAtXCSdPHs45L0IHlBxTQtjJ3diPx4xXon6Fdilp6kUpi9fzXTYLpRqxg_ZyvieE1FLyt2iHE9o0sua76McyGD9ll3HscIgb8Lh3OUPIgJfXV7gfBzO4GDJOsAHjMw7wgPPaO-vCLW6hAztkPIYWkp_m0newP4slT6FNsYd36E1XvsH753Mfrb58vj49X1x-O7s4XV4urKSidAwtCKmYMlAzVqYyQCvTQdNWxvC6prWijVUA7EYaqhpLWSsMIyBAdVAZvo8-bb3r8aaH1kIYkvF6nVxv0qSjcfrvl-Du9G3caFVRqaQqgo_PghR_jZAHXRZhwXsTII5ZM0oYZ5wwUtAP_6D3cUxlkTPFheCyzFCooy1lU8w5QffSDCV6Dk7Pwemn4Ap8-Gf7L-jvpApAt8CD8zD9R6XPV19XW-kjLRGlnA</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Llorens‐Agost, Marta</creator><creator>Luessing, Janna</creator><creator>Beneden, Amandine</creator><creator>Eykelenboom, John</creator><creator>O'Reilly, Dawn</creator><creator>Bicknell, Louise S</creator><creator>Reynolds, John J</creator><creator>Koegelenberg, Marianne</creator><creator>Hurles, Matthew E</creator><creator>Brady, Angela F</creator><creator>Jackson, Andrew P</creator><creator>Stewart, Grant S</creator><creator>Lowndes, Noel F</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3216-4427</orcidid></search><sort><creationdate>201812</creationdate><title>Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome</title><author>Llorens‐Agost, Marta ; Luessing, Janna ; Beneden, Amandine ; Eykelenboom, John ; O'Reilly, Dawn ; Bicknell, Louise S ; Reynolds, John J ; Koegelenberg, Marianne ; Hurles, Matthew E ; Brady, Angela F ; Jackson, Andrew P ; Stewart, Grant S ; Lowndes, Noel F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5148-1ede45727ae822002ae16afe9d6aa38818719c7ee2b5a179c12d4a20e4e7fe6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Ataxia telangiectasia</topic><topic>Ataxia Telangiectasia Mutated Proteins - genetics</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>ATR</topic><topic>ATR protein</topic><topic>Cell activation</topic><topic>Cell cycle</topic><topic>Cell Line</topic><topic>chicken</topic><topic>Chickens</topic><topic>DNA damage</topic><topic>Dwarfism - genetics</topic><topic>Dwarfism - metabolism</topic><topic>Exome Sequencing</topic><topic>Exons</topic><topic>Genomes</topic><topic>Growth rate</topic><topic>Humans</topic><topic>Introns</topic><topic>Microcephaly - genetics</topic><topic>Microcephaly - metabolism</topic><topic>Microencephaly</topic><topic>Missense mutation</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Pathogenicity</topic><topic>RNA Splicing</topic><topic>Seckel Syndrome</topic><topic>Splicing</topic><topic>splicing regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llorens‐Agost, Marta</creatorcontrib><creatorcontrib>Luessing, Janna</creatorcontrib><creatorcontrib>Beneden, Amandine</creatorcontrib><creatorcontrib>Eykelenboom, John</creatorcontrib><creatorcontrib>O'Reilly, Dawn</creatorcontrib><creatorcontrib>Bicknell, Louise S</creatorcontrib><creatorcontrib>Reynolds, John J</creatorcontrib><creatorcontrib>Koegelenberg, Marianne</creatorcontrib><creatorcontrib>Hurles, Matthew E</creatorcontrib><creatorcontrib>Brady, Angela F</creatorcontrib><creatorcontrib>Jackson, Andrew P</creatorcontrib><creatorcontrib>Stewart, Grant S</creatorcontrib><creatorcontrib>Lowndes, Noel F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llorens‐Agost, Marta</au><au>Luessing, Janna</au><au>Beneden, Amandine</au><au>Eykelenboom, John</au><au>O'Reilly, Dawn</au><au>Bicknell, Louise S</au><au>Reynolds, John J</au><au>Koegelenberg, Marianne</au><au>Hurles, Matthew E</au><au>Brady, Angela F</au><au>Jackson, Andrew P</au><au>Stewart, Grant S</au><au>Lowndes, Noel F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2018-12</date><risdate>2018</risdate><volume>39</volume><issue>12</issue><spage>1847</spage><epage>1853</epage><pages>1847-1853</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome. Modelling of novel missense mutations within the ATR cDNA did not result in loss of protein function. Rather, these mutations in their genomic context impacted upon normal splicing, resulting in exon skipping and Seckle Syndrome. For example, ATR (c.4995G&gt;T) results in skipping of exon 28 and subsequent abrogation of ATR function.</abstract><cop>United States</cop><pub>Hindawi Limited</pub><pmid>30199583</pmid><doi>10.1002/humu.23648</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3216-4427</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-7794
ispartof Human mutation, 2018-12, Vol.39 (12), p.1847-1853
issn 1059-7794
1098-1004
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615757
source MEDLINE; Wiley Journals
subjects Animals
Ataxia telangiectasia
Ataxia Telangiectasia Mutated Proteins - genetics
Ataxia Telangiectasia Mutated Proteins - metabolism
ATR
ATR protein
Cell activation
Cell cycle
Cell Line
chicken
Chickens
DNA damage
Dwarfism - genetics
Dwarfism - metabolism
Exome Sequencing
Exons
Genomes
Growth rate
Humans
Introns
Microcephaly - genetics
Microcephaly - metabolism
Microencephaly
Missense mutation
Mutation
Mutation, Missense
Pathogenicity
RNA Splicing
Seckel Syndrome
Splicing
splicing regulation
title Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20novel%20missense%20ATR%20mutations%20reveals%20new%20splicing%20defects%20underlying%20Seckel%20syndrome&rft.jtitle=Human%20mutation&rft.au=Llorens%E2%80%90Agost,%20Marta&rft.date=2018-12&rft.volume=39&rft.issue=12&rft.spage=1847&rft.epage=1853&rft.pages=1847-1853&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.23648&rft_dat=%3Cproquest_pubme%3E2102323020%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2134435822&rft_id=info:pmid/30199583&rfr_iscdi=true