Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome
Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients,...
Gespeichert in:
Veröffentlicht in: | Human mutation 2018-12, Vol.39 (12), p.1847-1853 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1853 |
---|---|
container_issue | 12 |
container_start_page | 1847 |
container_title | Human mutation |
container_volume | 39 |
creator | Llorens‐Agost, Marta Luessing, Janna Beneden, Amandine Eykelenboom, John O'Reilly, Dawn Bicknell, Louise S Reynolds, John J Koegelenberg, Marianne Hurles, Matthew E Brady, Angela F Jackson, Andrew P Stewart, Grant S Lowndes, Noel F |
description | Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome.
Modelling of novel missense mutations within the ATR cDNA did not result in loss of protein function. Rather, these mutations in their genomic context impacted upon normal splicing, resulting in exon skipping and Seckle Syndrome. For example, ATR (c.4995G>T) results in skipping of exon 28 and subsequent abrogation of ATR function. |
doi_str_mv | 10.1002/humu.23648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102323020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5148-1ede45727ae822002ae16afe9d6aa38818719c7ee2b5a179c12d4a20e4e7fe6a3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMo9kM3_QEl4EYKt83nZGYjXIq2hYpQe9cxzZxpUzPJNZm5Zf59M721qAtXCSdPHs45L0IHlBxTQtjJ3diPx4xXon6Fdilp6kUpi9fzXTYLpRqxg_ZyvieE1FLyt2iHE9o0sua76McyGD9ll3HscIgb8Lh3OUPIgJfXV7gfBzO4GDJOsAHjMw7wgPPaO-vCLW6hAztkPIYWkp_m0newP4slT6FNsYd36E1XvsH753Mfrb58vj49X1x-O7s4XV4urKSidAwtCKmYMlAzVqYyQCvTQdNWxvC6prWijVUA7EYaqhpLWSsMIyBAdVAZvo8-bb3r8aaH1kIYkvF6nVxv0qSjcfrvl-Du9G3caFVRqaQqgo_PghR_jZAHXRZhwXsTII5ZM0oYZ5wwUtAP_6D3cUxlkTPFheCyzFCooy1lU8w5QffSDCV6Dk7Pwemn4Ap8-Gf7L-jvpApAt8CD8zD9R6XPV19XW-kjLRGlnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134435822</pqid></control><display><type>article</type><title>Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Llorens‐Agost, Marta ; Luessing, Janna ; Beneden, Amandine ; Eykelenboom, John ; O'Reilly, Dawn ; Bicknell, Louise S ; Reynolds, John J ; Koegelenberg, Marianne ; Hurles, Matthew E ; Brady, Angela F ; Jackson, Andrew P ; Stewart, Grant S ; Lowndes, Noel F</creator><creatorcontrib>Llorens‐Agost, Marta ; Luessing, Janna ; Beneden, Amandine ; Eykelenboom, John ; O'Reilly, Dawn ; Bicknell, Louise S ; Reynolds, John J ; Koegelenberg, Marianne ; Hurles, Matthew E ; Brady, Angela F ; Jackson, Andrew P ; Stewart, Grant S ; Lowndes, Noel F</creatorcontrib><description>Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome.
Modelling of novel missense mutations within the ATR cDNA did not result in loss of protein function. Rather, these mutations in their genomic context impacted upon normal splicing, resulting in exon skipping and Seckle Syndrome. For example, ATR (c.4995G>T) results in skipping of exon 28 and subsequent abrogation of ATR function.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.23648</identifier><identifier>PMID: 30199583</identifier><language>eng</language><publisher>United States: Hindawi Limited</publisher><subject>Animals ; Ataxia telangiectasia ; Ataxia Telangiectasia Mutated Proteins - genetics ; Ataxia Telangiectasia Mutated Proteins - metabolism ; ATR ; ATR protein ; Cell activation ; Cell cycle ; Cell Line ; chicken ; Chickens ; DNA damage ; Dwarfism - genetics ; Dwarfism - metabolism ; Exome Sequencing ; Exons ; Genomes ; Growth rate ; Humans ; Introns ; Microcephaly - genetics ; Microcephaly - metabolism ; Microencephaly ; Missense mutation ; Mutation ; Mutation, Missense ; Pathogenicity ; RNA Splicing ; Seckel Syndrome ; Splicing ; splicing regulation</subject><ispartof>Human mutation, 2018-12, Vol.39 (12), p.1847-1853</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5148-1ede45727ae822002ae16afe9d6aa38818719c7ee2b5a179c12d4a20e4e7fe6a3</citedby><cites>FETCH-LOGICAL-c5148-1ede45727ae822002ae16afe9d6aa38818719c7ee2b5a179c12d4a20e4e7fe6a3</cites><orcidid>0000-0002-3216-4427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.23648$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.23648$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30199583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Llorens‐Agost, Marta</creatorcontrib><creatorcontrib>Luessing, Janna</creatorcontrib><creatorcontrib>Beneden, Amandine</creatorcontrib><creatorcontrib>Eykelenboom, John</creatorcontrib><creatorcontrib>O'Reilly, Dawn</creatorcontrib><creatorcontrib>Bicknell, Louise S</creatorcontrib><creatorcontrib>Reynolds, John J</creatorcontrib><creatorcontrib>Koegelenberg, Marianne</creatorcontrib><creatorcontrib>Hurles, Matthew E</creatorcontrib><creatorcontrib>Brady, Angela F</creatorcontrib><creatorcontrib>Jackson, Andrew P</creatorcontrib><creatorcontrib>Stewart, Grant S</creatorcontrib><creatorcontrib>Lowndes, Noel F</creatorcontrib><title>Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome.
Modelling of novel missense mutations within the ATR cDNA did not result in loss of protein function. Rather, these mutations in their genomic context impacted upon normal splicing, resulting in exon skipping and Seckle Syndrome. For example, ATR (c.4995G>T) results in skipping of exon 28 and subsequent abrogation of ATR function.</description><subject>Animals</subject><subject>Ataxia telangiectasia</subject><subject>Ataxia Telangiectasia Mutated Proteins - genetics</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>ATR</subject><subject>ATR protein</subject><subject>Cell activation</subject><subject>Cell cycle</subject><subject>Cell Line</subject><subject>chicken</subject><subject>Chickens</subject><subject>DNA damage</subject><subject>Dwarfism - genetics</subject><subject>Dwarfism - metabolism</subject><subject>Exome Sequencing</subject><subject>Exons</subject><subject>Genomes</subject><subject>Growth rate</subject><subject>Humans</subject><subject>Introns</subject><subject>Microcephaly - genetics</subject><subject>Microcephaly - metabolism</subject><subject>Microencephaly</subject><subject>Missense mutation</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Pathogenicity</subject><subject>RNA Splicing</subject><subject>Seckel Syndrome</subject><subject>Splicing</subject><subject>splicing regulation</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1rFTEUhoMo9kM3_QEl4EYKt83nZGYjXIq2hYpQe9cxzZxpUzPJNZm5Zf59M721qAtXCSdPHs45L0IHlBxTQtjJ3diPx4xXon6Fdilp6kUpi9fzXTYLpRqxg_ZyvieE1FLyt2iHE9o0sua76McyGD9ll3HscIgb8Lh3OUPIgJfXV7gfBzO4GDJOsAHjMw7wgPPaO-vCLW6hAztkPIYWkp_m0newP4slT6FNsYd36E1XvsH753Mfrb58vj49X1x-O7s4XV4urKSidAwtCKmYMlAzVqYyQCvTQdNWxvC6prWijVUA7EYaqhpLWSsMIyBAdVAZvo8-bb3r8aaH1kIYkvF6nVxv0qSjcfrvl-Du9G3caFVRqaQqgo_PghR_jZAHXRZhwXsTII5ZM0oYZ5wwUtAP_6D3cUxlkTPFheCyzFCooy1lU8w5QffSDCV6Dk7Pwemn4Ap8-Gf7L-jvpApAt8CD8zD9R6XPV19XW-kjLRGlnA</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Llorens‐Agost, Marta</creator><creator>Luessing, Janna</creator><creator>Beneden, Amandine</creator><creator>Eykelenboom, John</creator><creator>O'Reilly, Dawn</creator><creator>Bicknell, Louise S</creator><creator>Reynolds, John J</creator><creator>Koegelenberg, Marianne</creator><creator>Hurles, Matthew E</creator><creator>Brady, Angela F</creator><creator>Jackson, Andrew P</creator><creator>Stewart, Grant S</creator><creator>Lowndes, Noel F</creator><general>Hindawi Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3216-4427</orcidid></search><sort><creationdate>201812</creationdate><title>Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome</title><author>Llorens‐Agost, Marta ; Luessing, Janna ; Beneden, Amandine ; Eykelenboom, John ; O'Reilly, Dawn ; Bicknell, Louise S ; Reynolds, John J ; Koegelenberg, Marianne ; Hurles, Matthew E ; Brady, Angela F ; Jackson, Andrew P ; Stewart, Grant S ; Lowndes, Noel F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5148-1ede45727ae822002ae16afe9d6aa38818719c7ee2b5a179c12d4a20e4e7fe6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Ataxia telangiectasia</topic><topic>Ataxia Telangiectasia Mutated Proteins - genetics</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>ATR</topic><topic>ATR protein</topic><topic>Cell activation</topic><topic>Cell cycle</topic><topic>Cell Line</topic><topic>chicken</topic><topic>Chickens</topic><topic>DNA damage</topic><topic>Dwarfism - genetics</topic><topic>Dwarfism - metabolism</topic><topic>Exome Sequencing</topic><topic>Exons</topic><topic>Genomes</topic><topic>Growth rate</topic><topic>Humans</topic><topic>Introns</topic><topic>Microcephaly - genetics</topic><topic>Microcephaly - metabolism</topic><topic>Microencephaly</topic><topic>Missense mutation</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Pathogenicity</topic><topic>RNA Splicing</topic><topic>Seckel Syndrome</topic><topic>Splicing</topic><topic>splicing regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llorens‐Agost, Marta</creatorcontrib><creatorcontrib>Luessing, Janna</creatorcontrib><creatorcontrib>Beneden, Amandine</creatorcontrib><creatorcontrib>Eykelenboom, John</creatorcontrib><creatorcontrib>O'Reilly, Dawn</creatorcontrib><creatorcontrib>Bicknell, Louise S</creatorcontrib><creatorcontrib>Reynolds, John J</creatorcontrib><creatorcontrib>Koegelenberg, Marianne</creatorcontrib><creatorcontrib>Hurles, Matthew E</creatorcontrib><creatorcontrib>Brady, Angela F</creatorcontrib><creatorcontrib>Jackson, Andrew P</creatorcontrib><creatorcontrib>Stewart, Grant S</creatorcontrib><creatorcontrib>Lowndes, Noel F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llorens‐Agost, Marta</au><au>Luessing, Janna</au><au>Beneden, Amandine</au><au>Eykelenboom, John</au><au>O'Reilly, Dawn</au><au>Bicknell, Louise S</au><au>Reynolds, John J</au><au>Koegelenberg, Marianne</au><au>Hurles, Matthew E</au><au>Brady, Angela F</au><au>Jackson, Andrew P</au><au>Stewart, Grant S</au><au>Lowndes, Noel F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2018-12</date><risdate>2018</risdate><volume>39</volume><issue>12</issue><spage>1847</spage><epage>1853</epage><pages>1847-1853</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome.
Modelling of novel missense mutations within the ATR cDNA did not result in loss of protein function. Rather, these mutations in their genomic context impacted upon normal splicing, resulting in exon skipping and Seckle Syndrome. For example, ATR (c.4995G>T) results in skipping of exon 28 and subsequent abrogation of ATR function.</abstract><cop>United States</cop><pub>Hindawi Limited</pub><pmid>30199583</pmid><doi>10.1002/humu.23648</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3216-4427</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-7794 |
ispartof | Human mutation, 2018-12, Vol.39 (12), p.1847-1853 |
issn | 1059-7794 1098-1004 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615757 |
source | MEDLINE; Wiley Journals |
subjects | Animals Ataxia telangiectasia Ataxia Telangiectasia Mutated Proteins - genetics Ataxia Telangiectasia Mutated Proteins - metabolism ATR ATR protein Cell activation Cell cycle Cell Line chicken Chickens DNA damage Dwarfism - genetics Dwarfism - metabolism Exome Sequencing Exons Genomes Growth rate Humans Introns Microcephaly - genetics Microcephaly - metabolism Microencephaly Missense mutation Mutation Mutation, Missense Pathogenicity RNA Splicing Seckel Syndrome Splicing splicing regulation |
title | Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20novel%20missense%20ATR%20mutations%20reveals%20new%20splicing%20defects%20underlying%20Seckel%20syndrome&rft.jtitle=Human%20mutation&rft.au=Llorens%E2%80%90Agost,%20Marta&rft.date=2018-12&rft.volume=39&rft.issue=12&rft.spage=1847&rft.epage=1853&rft.pages=1847-1853&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.23648&rft_dat=%3Cproquest_pubme%3E2102323020%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2134435822&rft_id=info:pmid/30199583&rfr_iscdi=true |