Closed-loop optogenetic control of the dynamics of neural activity in non-human primates
Electrical neurostimulation is effective in the treatment of neurological disorders, but associated recording artefacts generally limit its applications to open-loop stimuli. Real-time and continuous closed-loop control of brain activity can, however, be achieved by pairing concurrent electrical rec...
Gespeichert in:
Veröffentlicht in: | Nature biomedical engineering 2023-04, Vol.7 (4), p.559-575 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 575 |
---|---|
container_issue | 4 |
container_start_page | 559 |
container_title | Nature biomedical engineering |
container_volume | 7 |
creator | Zaaimi, B. Turnbull, M. Hazra, A. Wang, Y. Gandara, C. McLeod, F. McDermott, E. E. Escobedo-Cousin, E. Idil, A. Shah Bailey, R. G. Tardio, S. Patel, A. Ponon, N. Gausden, J. Walsh, D. Hutchings, F. Kaiser, M. Cunningham, M. O. Clowry, G. J. LeBeau, F. E. N. Constandinou, T. G. Baker, S. N. Donaldson, N. Degenaar, P. O’Neill, A. Trevelyan, A. J. Jackson, A. |
description | Electrical neurostimulation is effective in the treatment of neurological disorders, but associated recording artefacts generally limit its applications to open-loop stimuli. Real-time and continuous closed-loop control of brain activity can, however, be achieved by pairing concurrent electrical recordings and optogenetics. Here we show that closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates. The approach generates oscillations in quiescent tissue, enhances or suppresses endogenous patterns in active tissue and modulates seizure-like bursts elicited by the convulsant 4-aminopyridine. A nonlinear model of the phase-dependent effects of optical stimulation reproduced the modulation of cycles of local-field potentials associated with seizure oscillations, as evidenced by the systematic changes in the variability and entropy of the phase-space trajectories of seizures, which correlated with changes in their duration and intensity. We also show that closed-loop optogenetic neurostimulation could be delivered using intracortical optrodes incorporating light-emitting diodes. Closed-loop optogenetic approaches may be translatable to therapeutic applications in humans.
Closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates. |
doi_str_mv | 10.1038/s41551-022-00945-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7614485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806291681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6d9180983215722b8b1be1659b4d1919eacf63786abf7fb2004b4f45a9fe2af13</originalsourceid><addsrcrecordid>eNp9kctqHDEQRYWJsY3tH8giCLLJRrHeLW0CYcgLDN444J1Qq6UZmW5pIqkN8_fp8TiOnUVWpaJuXd3iAPCW4I8EM3VVORGCIEwpwlhzgdQROKNEdEhxeffmxfsUXNZ6jzEmmnHdiRNwyiSVUjB5Bu5WY65-QGPOW5i3La998i066HJqJY8wB9g2Hg67ZKfo6r5Pfi52hNa1-BDbDsYEU05oM082wW2Jk22-XoDjYMfqL5_qOfj59cvt6ju6vvn2Y_X5Gjne8YbkoInCWrF9XEp71ZPeEyl0zweiifbWBck6JW0futBTjHnPAxdWB09tIOwcfDr4bud-8oPzS2w7mscYZWeyjeb1JMWNWecH00nCuRKLwYcng5J_zb42M8Xq_Dja5PNcDe1oJzkTGi_S9_9I7_Nc0nKeoQpLqolU-0T0oHIl11p8eA5DsNmzMwd2ZmFnHtkZtSy9e3nG88ofUouAHQR1GaW1L3___o_tb7Lupbs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806291681</pqid></control><display><type>article</type><title>Closed-loop optogenetic control of the dynamics of neural activity in non-human primates</title><source>MEDLINE</source><source>SpringerLink</source><creator>Zaaimi, B. ; Turnbull, M. ; Hazra, A. ; Wang, Y. ; Gandara, C. ; McLeod, F. ; McDermott, E. E. ; Escobedo-Cousin, E. ; Idil, A. Shah ; Bailey, R. G. ; Tardio, S. ; Patel, A. ; Ponon, N. ; Gausden, J. ; Walsh, D. ; Hutchings, F. ; Kaiser, M. ; Cunningham, M. O. ; Clowry, G. J. ; LeBeau, F. E. N. ; Constandinou, T. G. ; Baker, S. N. ; Donaldson, N. ; Degenaar, P. ; O’Neill, A. ; Trevelyan, A. J. ; Jackson, A.</creator><creatorcontrib>Zaaimi, B. ; Turnbull, M. ; Hazra, A. ; Wang, Y. ; Gandara, C. ; McLeod, F. ; McDermott, E. E. ; Escobedo-Cousin, E. ; Idil, A. Shah ; Bailey, R. G. ; Tardio, S. ; Patel, A. ; Ponon, N. ; Gausden, J. ; Walsh, D. ; Hutchings, F. ; Kaiser, M. ; Cunningham, M. O. ; Clowry, G. J. ; LeBeau, F. E. N. ; Constandinou, T. G. ; Baker, S. N. ; Donaldson, N. ; Degenaar, P. ; O’Neill, A. ; Trevelyan, A. J. ; Jackson, A.</creatorcontrib><description>Electrical neurostimulation is effective in the treatment of neurological disorders, but associated recording artefacts generally limit its applications to open-loop stimuli. Real-time and continuous closed-loop control of brain activity can, however, be achieved by pairing concurrent electrical recordings and optogenetics. Here we show that closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates. The approach generates oscillations in quiescent tissue, enhances or suppresses endogenous patterns in active tissue and modulates seizure-like bursts elicited by the convulsant 4-aminopyridine. A nonlinear model of the phase-dependent effects of optical stimulation reproduced the modulation of cycles of local-field potentials associated with seizure oscillations, as evidenced by the systematic changes in the variability and entropy of the phase-space trajectories of seizures, which correlated with changes in their duration and intensity. We also show that closed-loop optogenetic neurostimulation could be delivered using intracortical optrodes incorporating light-emitting diodes. Closed-loop optogenetic approaches may be translatable to therapeutic applications in humans.
Closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-022-00945-8</identifier><identifier>PMID: 36266536</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/44 ; 14/63 ; 631/378/116 ; 631/378/1689/178 ; 631/378/3920 ; 639/166/985 ; 64/110 ; 9/30 ; Animals ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Brain ; Brain slice preparation ; Closed loops ; Entropy ; Feedback control ; Genetics ; Information processing ; Light emitting diodes ; Mice ; Mice, Transgenic ; Neurological diseases ; Opsins ; Optics ; Optogenetics ; Oscillations ; Primates ; Seizures ; Stimulation ; Therapeutic applications ; Transgenic animals ; Transgenic mice</subject><ispartof>Nature biomedical engineering, 2023-04, Vol.7 (4), p.559-575</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6d9180983215722b8b1be1659b4d1919eacf63786abf7fb2004b4f45a9fe2af13</citedby><cites>FETCH-LOGICAL-c474t-6d9180983215722b8b1be1659b4d1919eacf63786abf7fb2004b4f45a9fe2af13</cites><orcidid>0000-0001-8118-4048 ; 0000-0001-8701-6387 ; 0000-0002-4336-730X ; 0000-0001-9778-1162 ; 0000-0003-0379-7476 ; 0000-0002-5984-6698 ; 0000-0002-8010-8067 ; 0000-0002-4654-3110 ; 0000-0001-7367-766X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-022-00945-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-022-00945-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36266536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaaimi, B.</creatorcontrib><creatorcontrib>Turnbull, M.</creatorcontrib><creatorcontrib>Hazra, A.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Gandara, C.</creatorcontrib><creatorcontrib>McLeod, F.</creatorcontrib><creatorcontrib>McDermott, E. E.</creatorcontrib><creatorcontrib>Escobedo-Cousin, E.</creatorcontrib><creatorcontrib>Idil, A. Shah</creatorcontrib><creatorcontrib>Bailey, R. G.</creatorcontrib><creatorcontrib>Tardio, S.</creatorcontrib><creatorcontrib>Patel, A.</creatorcontrib><creatorcontrib>Ponon, N.</creatorcontrib><creatorcontrib>Gausden, J.</creatorcontrib><creatorcontrib>Walsh, D.</creatorcontrib><creatorcontrib>Hutchings, F.</creatorcontrib><creatorcontrib>Kaiser, M.</creatorcontrib><creatorcontrib>Cunningham, M. O.</creatorcontrib><creatorcontrib>Clowry, G. J.</creatorcontrib><creatorcontrib>LeBeau, F. E. N.</creatorcontrib><creatorcontrib>Constandinou, T. G.</creatorcontrib><creatorcontrib>Baker, S. N.</creatorcontrib><creatorcontrib>Donaldson, N.</creatorcontrib><creatorcontrib>Degenaar, P.</creatorcontrib><creatorcontrib>O’Neill, A.</creatorcontrib><creatorcontrib>Trevelyan, A. J.</creatorcontrib><creatorcontrib>Jackson, A.</creatorcontrib><title>Closed-loop optogenetic control of the dynamics of neural activity in non-human primates</title><title>Nature biomedical engineering</title><addtitle>Nat. Biomed. Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>Electrical neurostimulation is effective in the treatment of neurological disorders, but associated recording artefacts generally limit its applications to open-loop stimuli. Real-time and continuous closed-loop control of brain activity can, however, be achieved by pairing concurrent electrical recordings and optogenetics. Here we show that closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates. The approach generates oscillations in quiescent tissue, enhances or suppresses endogenous patterns in active tissue and modulates seizure-like bursts elicited by the convulsant 4-aminopyridine. A nonlinear model of the phase-dependent effects of optical stimulation reproduced the modulation of cycles of local-field potentials associated with seizure oscillations, as evidenced by the systematic changes in the variability and entropy of the phase-space trajectories of seizures, which correlated with changes in their duration and intensity. We also show that closed-loop optogenetic neurostimulation could be delivered using intracortical optrodes incorporating light-emitting diodes. Closed-loop optogenetic approaches may be translatable to therapeutic applications in humans.
Closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates.</description><subject>13/44</subject><subject>14/63</subject><subject>631/378/116</subject><subject>631/378/1689/178</subject><subject>631/378/3920</subject><subject>639/166/985</subject><subject>64/110</subject><subject>9/30</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain slice preparation</subject><subject>Closed loops</subject><subject>Entropy</subject><subject>Feedback control</subject><subject>Genetics</subject><subject>Information processing</subject><subject>Light emitting diodes</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neurological diseases</subject><subject>Opsins</subject><subject>Optics</subject><subject>Optogenetics</subject><subject>Oscillations</subject><subject>Primates</subject><subject>Seizures</subject><subject>Stimulation</subject><subject>Therapeutic applications</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctqHDEQRYWJsY3tH8giCLLJRrHeLW0CYcgLDN444J1Qq6UZmW5pIqkN8_fp8TiOnUVWpaJuXd3iAPCW4I8EM3VVORGCIEwpwlhzgdQROKNEdEhxeffmxfsUXNZ6jzEmmnHdiRNwyiSVUjB5Bu5WY65-QGPOW5i3La998i066HJqJY8wB9g2Hg67ZKfo6r5Pfi52hNa1-BDbDsYEU05oM082wW2Jk22-XoDjYMfqL5_qOfj59cvt6ju6vvn2Y_X5Gjne8YbkoInCWrF9XEp71ZPeEyl0zweiifbWBck6JW0futBTjHnPAxdWB09tIOwcfDr4bud-8oPzS2w7mscYZWeyjeb1JMWNWecH00nCuRKLwYcng5J_zb42M8Xq_Dja5PNcDe1oJzkTGi_S9_9I7_Nc0nKeoQpLqolU-0T0oHIl11p8eA5DsNmzMwd2ZmFnHtkZtSy9e3nG88ofUouAHQR1GaW1L3___o_tb7Lupbs</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zaaimi, B.</creator><creator>Turnbull, M.</creator><creator>Hazra, A.</creator><creator>Wang, Y.</creator><creator>Gandara, C.</creator><creator>McLeod, F.</creator><creator>McDermott, E. E.</creator><creator>Escobedo-Cousin, E.</creator><creator>Idil, A. Shah</creator><creator>Bailey, R. G.</creator><creator>Tardio, S.</creator><creator>Patel, A.</creator><creator>Ponon, N.</creator><creator>Gausden, J.</creator><creator>Walsh, D.</creator><creator>Hutchings, F.</creator><creator>Kaiser, M.</creator><creator>Cunningham, M. O.</creator><creator>Clowry, G. J.</creator><creator>LeBeau, F. E. N.</creator><creator>Constandinou, T. G.</creator><creator>Baker, S. N.</creator><creator>Donaldson, N.</creator><creator>Degenaar, P.</creator><creator>O’Neill, A.</creator><creator>Trevelyan, A. J.</creator><creator>Jackson, A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8118-4048</orcidid><orcidid>https://orcid.org/0000-0001-8701-6387</orcidid><orcidid>https://orcid.org/0000-0002-4336-730X</orcidid><orcidid>https://orcid.org/0000-0001-9778-1162</orcidid><orcidid>https://orcid.org/0000-0003-0379-7476</orcidid><orcidid>https://orcid.org/0000-0002-5984-6698</orcidid><orcidid>https://orcid.org/0000-0002-8010-8067</orcidid><orcidid>https://orcid.org/0000-0002-4654-3110</orcidid><orcidid>https://orcid.org/0000-0001-7367-766X</orcidid></search><sort><creationdate>20230401</creationdate><title>Closed-loop optogenetic control of the dynamics of neural activity in non-human primates</title><author>Zaaimi, B. ; Turnbull, M. ; Hazra, A. ; Wang, Y. ; Gandara, C. ; McLeod, F. ; McDermott, E. E. ; Escobedo-Cousin, E. ; Idil, A. Shah ; Bailey, R. G. ; Tardio, S. ; Patel, A. ; Ponon, N. ; Gausden, J. ; Walsh, D. ; Hutchings, F. ; Kaiser, M. ; Cunningham, M. O. ; Clowry, G. J. ; LeBeau, F. E. N. ; Constandinou, T. G. ; Baker, S. N. ; Donaldson, N. ; Degenaar, P. ; O’Neill, A. ; Trevelyan, A. J. ; Jackson, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6d9180983215722b8b1be1659b4d1919eacf63786abf7fb2004b4f45a9fe2af13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/44</topic><topic>14/63</topic><topic>631/378/116</topic><topic>631/378/1689/178</topic><topic>631/378/3920</topic><topic>639/166/985</topic><topic>64/110</topic><topic>9/30</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain slice preparation</topic><topic>Closed loops</topic><topic>Entropy</topic><topic>Feedback control</topic><topic>Genetics</topic><topic>Information processing</topic><topic>Light emitting diodes</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neurological diseases</topic><topic>Opsins</topic><topic>Optics</topic><topic>Optogenetics</topic><topic>Oscillations</topic><topic>Primates</topic><topic>Seizures</topic><topic>Stimulation</topic><topic>Therapeutic applications</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaaimi, B.</creatorcontrib><creatorcontrib>Turnbull, M.</creatorcontrib><creatorcontrib>Hazra, A.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Gandara, C.</creatorcontrib><creatorcontrib>McLeod, F.</creatorcontrib><creatorcontrib>McDermott, E. E.</creatorcontrib><creatorcontrib>Escobedo-Cousin, E.</creatorcontrib><creatorcontrib>Idil, A. Shah</creatorcontrib><creatorcontrib>Bailey, R. G.</creatorcontrib><creatorcontrib>Tardio, S.</creatorcontrib><creatorcontrib>Patel, A.</creatorcontrib><creatorcontrib>Ponon, N.</creatorcontrib><creatorcontrib>Gausden, J.</creatorcontrib><creatorcontrib>Walsh, D.</creatorcontrib><creatorcontrib>Hutchings, F.</creatorcontrib><creatorcontrib>Kaiser, M.</creatorcontrib><creatorcontrib>Cunningham, M. O.</creatorcontrib><creatorcontrib>Clowry, G. J.</creatorcontrib><creatorcontrib>LeBeau, F. E. N.</creatorcontrib><creatorcontrib>Constandinou, T. G.</creatorcontrib><creatorcontrib>Baker, S. N.</creatorcontrib><creatorcontrib>Donaldson, N.</creatorcontrib><creatorcontrib>Degenaar, P.</creatorcontrib><creatorcontrib>O’Neill, A.</creatorcontrib><creatorcontrib>Trevelyan, A. J.</creatorcontrib><creatorcontrib>Jackson, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaaimi, B.</au><au>Turnbull, M.</au><au>Hazra, A.</au><au>Wang, Y.</au><au>Gandara, C.</au><au>McLeod, F.</au><au>McDermott, E. E.</au><au>Escobedo-Cousin, E.</au><au>Idil, A. Shah</au><au>Bailey, R. G.</au><au>Tardio, S.</au><au>Patel, A.</au><au>Ponon, N.</au><au>Gausden, J.</au><au>Walsh, D.</au><au>Hutchings, F.</au><au>Kaiser, M.</au><au>Cunningham, M. O.</au><au>Clowry, G. J.</au><au>LeBeau, F. E. N.</au><au>Constandinou, T. G.</au><au>Baker, S. N.</au><au>Donaldson, N.</au><au>Degenaar, P.</au><au>O’Neill, A.</au><au>Trevelyan, A. J.</au><au>Jackson, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-loop optogenetic control of the dynamics of neural activity in non-human primates</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat. Biomed. Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>7</volume><issue>4</issue><spage>559</spage><epage>575</epage><pages>559-575</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>Electrical neurostimulation is effective in the treatment of neurological disorders, but associated recording artefacts generally limit its applications to open-loop stimuli. Real-time and continuous closed-loop control of brain activity can, however, be achieved by pairing concurrent electrical recordings and optogenetics. Here we show that closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates. The approach generates oscillations in quiescent tissue, enhances or suppresses endogenous patterns in active tissue and modulates seizure-like bursts elicited by the convulsant 4-aminopyridine. A nonlinear model of the phase-dependent effects of optical stimulation reproduced the modulation of cycles of local-field potentials associated with seizure oscillations, as evidenced by the systematic changes in the variability and entropy of the phase-space trajectories of seizures, which correlated with changes in their duration and intensity. We also show that closed-loop optogenetic neurostimulation could be delivered using intracortical optrodes incorporating light-emitting diodes. Closed-loop optogenetic approaches may be translatable to therapeutic applications in humans.
Closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36266536</pmid><doi>10.1038/s41551-022-00945-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8118-4048</orcidid><orcidid>https://orcid.org/0000-0001-8701-6387</orcidid><orcidid>https://orcid.org/0000-0002-4336-730X</orcidid><orcidid>https://orcid.org/0000-0001-9778-1162</orcidid><orcidid>https://orcid.org/0000-0003-0379-7476</orcidid><orcidid>https://orcid.org/0000-0002-5984-6698</orcidid><orcidid>https://orcid.org/0000-0002-8010-8067</orcidid><orcidid>https://orcid.org/0000-0002-4654-3110</orcidid><orcidid>https://orcid.org/0000-0001-7367-766X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-846X |
ispartof | Nature biomedical engineering, 2023-04, Vol.7 (4), p.559-575 |
issn | 2157-846X 2157-846X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7614485 |
source | MEDLINE; SpringerLink |
subjects | 13/44 14/63 631/378/116 631/378/1689/178 631/378/3920 639/166/985 64/110 9/30 Animals Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Brain Brain slice preparation Closed loops Entropy Feedback control Genetics Information processing Light emitting diodes Mice Mice, Transgenic Neurological diseases Opsins Optics Optogenetics Oscillations Primates Seizures Stimulation Therapeutic applications Transgenic animals Transgenic mice |
title | Closed-loop optogenetic control of the dynamics of neural activity in non-human primates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-loop%20optogenetic%20control%20of%20the%20dynamics%20of%20neural%20activity%20in%20non-human%20primates&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Zaaimi,%20B.&rft.date=2023-04-01&rft.volume=7&rft.issue=4&rft.spage=559&rft.epage=575&rft.pages=559-575&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-022-00945-8&rft_dat=%3Cproquest_pubme%3E2806291681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806291681&rft_id=info:pmid/36266536&rfr_iscdi=true |