Generalized Geographically Weighted Regression Model within a Modularized Bayesian Framework
Geographically weighted regression (GWR) models handle geographical dependence through a spatially varying coefficient model and have been widely used in applied science, but its general Bayesian extension is unclear because it involves a weighted log-likelihood which does not imply a probability di...
Gespeichert in:
Veröffentlicht in: | Bayesian analysis 2023-01, Vol.1 (1), p.1-36 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Bayesian analysis |
container_volume | 1 |
creator | Liu, Yang Goudie, Robert J B |
description | Geographically weighted regression (GWR) models handle geographical dependence through a spatially varying coefficient model and have been widely used in applied science, but its general Bayesian extension is unclear because it involves a weighted log-likelihood which does not imply a probability distribution on data. We present a Bayesian GWR model and show that its essence is dealing with partial misspecification of the model. Current modularized Bayesian inference models accommodate partial misspecification from a single component of the model. We extend these models to handle partial misspecification in more than one component of the model, as required for our Bayesian GWR model. Information from the various spatial locations is manipulated via a geographically weighted kernel and the optimal manipulation is chosen according to a Kullback-Leibler (KL) divergence. We justify the model via an information risk minimization approach and show the consistency of the proposed estimator in terms of a geographically weighted KL divergence. |
doi_str_mv | 10.1214/22-BA1357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7614111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771089734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e82c7480858457d8ee7994f579861f802ec6b0277105f4ef3dbd6f78aa755a813</originalsourceid><addsrcrecordid>eNpVUclOwzAQtRAIynLgB1COcAjYie1xLkgFQUECISEQFyTLTSapIY2LnVKVryddQHCa7c17sxByyOgpSxg_S5L4os9SARukx7KUxVJmdHPpy5hmIHbIbghvlAoBDLbJTiqBcS6hR14H2KA3tf3CIhqgq7yZjGxu6noevaCtRm2Xf8TKYwjWNdG9K7COZrYd2SYyi3BaG7_svjBzDNY00bU3Y5w5_75PtkpTBzxY2z3yfH31dHkT3z0Mbi_7d3GegmhjVEkOXFElFBdQKETIMl4KyJRkpaIJ5nJIEwBGRcmxTIthIUtQxoAQRrF0j5yveCfT4RiLHJu2W0lPvB0bP9fOWP2_0tiRrtynBsk4YwuC4zWBdx9TDK0e25BjXZsG3TTopbbKIOUd9GQFzb0LwWP5K8OoXnxDJ4lefaPDHv2d6xf5c_70Gx05hg0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771089734</pqid></control><display><type>article</type><title>Generalized Geographically Weighted Regression Model within a Modularized Bayesian Framework</title><source>DOAJ Directory of Open Access Journals</source><source>Project Euclid Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Yang ; Goudie, Robert J B</creator><creatorcontrib>Liu, Yang ; Goudie, Robert J B</creatorcontrib><description>Geographically weighted regression (GWR) models handle geographical dependence through a spatially varying coefficient model and have been widely used in applied science, but its general Bayesian extension is unclear because it involves a weighted log-likelihood which does not imply a probability distribution on data. We present a Bayesian GWR model and show that its essence is dealing with partial misspecification of the model. Current modularized Bayesian inference models accommodate partial misspecification from a single component of the model. We extend these models to handle partial misspecification in more than one component of the model, as required for our Bayesian GWR model. Information from the various spatial locations is manipulated via a geographically weighted kernel and the optimal manipulation is chosen according to a Kullback-Leibler (KL) divergence. We justify the model via an information risk minimization approach and show the consistency of the proposed estimator in terms of a geographically weighted KL divergence.</description><identifier>ISSN: 1936-0975</identifier><identifier>EISSN: 1931-6690</identifier><identifier>DOI: 10.1214/22-BA1357</identifier><identifier>PMID: 36714467</identifier><language>eng</language><publisher>United States</publisher><ispartof>Bayesian analysis, 2023-01, Vol.1 (1), p.1-36</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e82c7480858457d8ee7994f579861f802ec6b0277105f4ef3dbd6f78aa755a813</citedby><cites>FETCH-LOGICAL-c375t-e82c7480858457d8ee7994f579861f802ec6b0277105f4ef3dbd6f78aa755a813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36714467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Goudie, Robert J B</creatorcontrib><title>Generalized Geographically Weighted Regression Model within a Modularized Bayesian Framework</title><title>Bayesian analysis</title><addtitle>Bayesian Anal</addtitle><description>Geographically weighted regression (GWR) models handle geographical dependence through a spatially varying coefficient model and have been widely used in applied science, but its general Bayesian extension is unclear because it involves a weighted log-likelihood which does not imply a probability distribution on data. We present a Bayesian GWR model and show that its essence is dealing with partial misspecification of the model. Current modularized Bayesian inference models accommodate partial misspecification from a single component of the model. We extend these models to handle partial misspecification in more than one component of the model, as required for our Bayesian GWR model. Information from the various spatial locations is manipulated via a geographically weighted kernel and the optimal manipulation is chosen according to a Kullback-Leibler (KL) divergence. We justify the model via an information risk minimization approach and show the consistency of the proposed estimator in terms of a geographically weighted KL divergence.</description><issn>1936-0975</issn><issn>1931-6690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUclOwzAQtRAIynLgB1COcAjYie1xLkgFQUECISEQFyTLTSapIY2LnVKVryddQHCa7c17sxByyOgpSxg_S5L4os9SARukx7KUxVJmdHPpy5hmIHbIbghvlAoBDLbJTiqBcS6hR14H2KA3tf3CIhqgq7yZjGxu6noevaCtRm2Xf8TKYwjWNdG9K7COZrYd2SYyi3BaG7_svjBzDNY00bU3Y5w5_75PtkpTBzxY2z3yfH31dHkT3z0Mbi_7d3GegmhjVEkOXFElFBdQKETIMl4KyJRkpaIJ5nJIEwBGRcmxTIthIUtQxoAQRrF0j5yveCfT4RiLHJu2W0lPvB0bP9fOWP2_0tiRrtynBsk4YwuC4zWBdx9TDK0e25BjXZsG3TTopbbKIOUd9GQFzb0LwWP5K8OoXnxDJ4lefaPDHv2d6xf5c_70Gx05hg0</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Yang</creator><creator>Goudie, Robert J B</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230101</creationdate><title>Generalized Geographically Weighted Regression Model within a Modularized Bayesian Framework</title><author>Liu, Yang ; Goudie, Robert J B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e82c7480858457d8ee7994f579861f802ec6b0277105f4ef3dbd6f78aa755a813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Goudie, Robert J B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bayesian analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yang</au><au>Goudie, Robert J B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Geographically Weighted Regression Model within a Modularized Bayesian Framework</atitle><jtitle>Bayesian analysis</jtitle><addtitle>Bayesian Anal</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>1</volume><issue>1</issue><spage>1</spage><epage>36</epage><pages>1-36</pages><issn>1936-0975</issn><eissn>1931-6690</eissn><abstract>Geographically weighted regression (GWR) models handle geographical dependence through a spatially varying coefficient model and have been widely used in applied science, but its general Bayesian extension is unclear because it involves a weighted log-likelihood which does not imply a probability distribution on data. We present a Bayesian GWR model and show that its essence is dealing with partial misspecification of the model. Current modularized Bayesian inference models accommodate partial misspecification from a single component of the model. We extend these models to handle partial misspecification in more than one component of the model, as required for our Bayesian GWR model. Information from the various spatial locations is manipulated via a geographically weighted kernel and the optimal manipulation is chosen according to a Kullback-Leibler (KL) divergence. We justify the model via an information risk minimization approach and show the consistency of the proposed estimator in terms of a geographically weighted KL divergence.</abstract><cop>United States</cop><pmid>36714467</pmid><doi>10.1214/22-BA1357</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0975 |
ispartof | Bayesian analysis, 2023-01, Vol.1 (1), p.1-36 |
issn | 1936-0975 1931-6690 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7614111 |
source | DOAJ Directory of Open Access Journals; Project Euclid Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Generalized Geographically Weighted Regression Model within a Modularized Bayesian Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Geographically%20Weighted%20Regression%20Model%20within%20a%20Modularized%20Bayesian%20Framework&rft.jtitle=Bayesian%20analysis&rft.au=Liu,%20Yang&rft.date=2023-01-01&rft.volume=1&rft.issue=1&rft.spage=1&rft.epage=36&rft.pages=1-36&rft.issn=1936-0975&rft.eissn=1931-6690&rft_id=info:doi/10.1214/22-BA1357&rft_dat=%3Cproquest_pubme%3E2771089734%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771089734&rft_id=info:pmid/36714467&rfr_iscdi=true |